This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the zero falling factorial at natural N . (Contributed by Scott Fenton, 17-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0fallfac | |- ( N e. NN -> ( 0 FallFac N ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | |- 0 e. CC |
|
| 2 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 3 | fallfacval | |- ( ( 0 e. CC /\ N e. NN0 ) -> ( 0 FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( 0 - k ) ) |
|
| 4 | 1 2 3 | sylancr | |- ( N e. NN -> ( 0 FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( 0 - k ) ) |
| 5 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 6 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 7 | 5 6 | eleqtrdi | |- ( N e. NN -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
| 8 | elfzelz | |- ( k e. ( 0 ... ( N - 1 ) ) -> k e. ZZ ) |
|
| 9 | 8 | zcnd | |- ( k e. ( 0 ... ( N - 1 ) ) -> k e. CC ) |
| 10 | subcl | |- ( ( 0 e. CC /\ k e. CC ) -> ( 0 - k ) e. CC ) |
|
| 11 | 1 9 10 | sylancr | |- ( k e. ( 0 ... ( N - 1 ) ) -> ( 0 - k ) e. CC ) |
| 12 | 11 | adantl | |- ( ( N e. NN /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( 0 - k ) e. CC ) |
| 13 | oveq2 | |- ( k = 0 -> ( 0 - k ) = ( 0 - 0 ) ) |
|
| 14 | 0m0e0 | |- ( 0 - 0 ) = 0 |
|
| 15 | 13 14 | eqtrdi | |- ( k = 0 -> ( 0 - k ) = 0 ) |
| 16 | 7 12 15 | fprod1p | |- ( N e. NN -> prod_ k e. ( 0 ... ( N - 1 ) ) ( 0 - k ) = ( 0 x. prod_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( 0 - k ) ) ) |
| 17 | fzfid | |- ( N e. NN -> ( ( 0 + 1 ) ... ( N - 1 ) ) e. Fin ) |
|
| 18 | elfzelz | |- ( k e. ( ( 0 + 1 ) ... ( N - 1 ) ) -> k e. ZZ ) |
|
| 19 | 18 | zcnd | |- ( k e. ( ( 0 + 1 ) ... ( N - 1 ) ) -> k e. CC ) |
| 20 | 1 19 10 | sylancr | |- ( k e. ( ( 0 + 1 ) ... ( N - 1 ) ) -> ( 0 - k ) e. CC ) |
| 21 | 20 | adantl | |- ( ( N e. NN /\ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ) -> ( 0 - k ) e. CC ) |
| 22 | 17 21 | fprodcl | |- ( N e. NN -> prod_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( 0 - k ) e. CC ) |
| 23 | 22 | mul02d | |- ( N e. NN -> ( 0 x. prod_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( 0 - k ) ) = 0 ) |
| 24 | 4 16 23 | 3eqtrd | |- ( N e. NN -> ( 0 FallFac N ) = 0 ) |