This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the falling factorial at a successor. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fallfacp1 | |- ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac ( N + 1 ) ) = ( ( A FallFac N ) x. ( A - N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 2 | 1 | adantl | |- ( ( A e. CC /\ N e. NN0 ) -> N e. CC ) |
| 3 | 1cnd | |- ( ( A e. CC /\ N e. NN0 ) -> 1 e. CC ) |
|
| 4 | 2 3 | pncand | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( N + 1 ) - 1 ) = N ) |
| 5 | 4 | oveq2d | |- ( ( A e. CC /\ N e. NN0 ) -> ( 0 ... ( ( N + 1 ) - 1 ) ) = ( 0 ... N ) ) |
| 6 | 5 | prodeq1d | |- ( ( A e. CC /\ N e. NN0 ) -> prod_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( A - k ) = prod_ k e. ( 0 ... N ) ( A - k ) ) |
| 7 | elnn0uz | |- ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) |
|
| 8 | 7 | biimpi | |- ( N e. NN0 -> N e. ( ZZ>= ` 0 ) ) |
| 9 | 8 | adantl | |- ( ( A e. CC /\ N e. NN0 ) -> N e. ( ZZ>= ` 0 ) ) |
| 10 | elfznn0 | |- ( k e. ( 0 ... N ) -> k e. NN0 ) |
|
| 11 | 10 | nn0cnd | |- ( k e. ( 0 ... N ) -> k e. CC ) |
| 12 | subcl | |- ( ( A e. CC /\ k e. CC ) -> ( A - k ) e. CC ) |
|
| 13 | 11 12 | sylan2 | |- ( ( A e. CC /\ k e. ( 0 ... N ) ) -> ( A - k ) e. CC ) |
| 14 | 13 | adantlr | |- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( A - k ) e. CC ) |
| 15 | oveq2 | |- ( k = N -> ( A - k ) = ( A - N ) ) |
|
| 16 | 9 14 15 | fprodm1 | |- ( ( A e. CC /\ N e. NN0 ) -> prod_ k e. ( 0 ... N ) ( A - k ) = ( prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) x. ( A - N ) ) ) |
| 17 | 6 16 | eqtrd | |- ( ( A e. CC /\ N e. NN0 ) -> prod_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( A - k ) = ( prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) x. ( A - N ) ) ) |
| 18 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 19 | fallfacval | |- ( ( A e. CC /\ ( N + 1 ) e. NN0 ) -> ( A FallFac ( N + 1 ) ) = prod_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( A - k ) ) |
|
| 20 | 18 19 | sylan2 | |- ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac ( N + 1 ) ) = prod_ k e. ( 0 ... ( ( N + 1 ) - 1 ) ) ( A - k ) ) |
| 21 | fallfacval | |- ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) ) |
|
| 22 | 21 | oveq1d | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( A FallFac N ) x. ( A - N ) ) = ( prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) x. ( A - N ) ) ) |
| 23 | 17 20 22 | 3eqtr4d | |- ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac ( N + 1 ) ) = ( ( A FallFac N ) x. ( A - N ) ) ) |