This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate a one-to-one function with a pair as domain and two different variables. (Contributed by Thierry Arnoux, 12-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1prex.1 | |- ( x = ( f ` A ) -> ( ps <-> ch ) ) |
|
| f1prex.2 | |- ( y = ( f ` B ) -> ( ch <-> ph ) ) |
||
| Assertion | f1prex | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( E. f ( f : { A , B } -1-1-> D /\ ph ) <-> E. x e. D E. y e. D ( x =/= y /\ ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1prex.1 | |- ( x = ( f ` A ) -> ( ps <-> ch ) ) |
|
| 2 | f1prex.2 | |- ( y = ( f ` B ) -> ( ch <-> ph ) ) |
|
| 3 | simpl1 | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( f : { A , B } -1-1-> D /\ ph ) ) -> A e. V ) |
|
| 4 | simpl2 | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( f : { A , B } -1-1-> D /\ ph ) ) -> B e. W ) |
|
| 5 | simprl | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( f : { A , B } -1-1-> D /\ ph ) ) -> f : { A , B } -1-1-> D ) |
|
| 6 | f1f | |- ( f : { A , B } -1-1-> D -> f : { A , B } --> D ) |
|
| 7 | 5 6 | syl | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( f : { A , B } -1-1-> D /\ ph ) ) -> f : { A , B } --> D ) |
| 8 | fpr2g | |- ( ( A e. V /\ B e. W ) -> ( f : { A , B } --> D <-> ( ( f ` A ) e. D /\ ( f ` B ) e. D /\ f = { <. A , ( f ` A ) >. , <. B , ( f ` B ) >. } ) ) ) |
|
| 9 | 8 | biimpa | |- ( ( ( A e. V /\ B e. W ) /\ f : { A , B } --> D ) -> ( ( f ` A ) e. D /\ ( f ` B ) e. D /\ f = { <. A , ( f ` A ) >. , <. B , ( f ` B ) >. } ) ) |
| 10 | 9 | simp1d | |- ( ( ( A e. V /\ B e. W ) /\ f : { A , B } --> D ) -> ( f ` A ) e. D ) |
| 11 | 3 4 7 10 | syl21anc | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( f : { A , B } -1-1-> D /\ ph ) ) -> ( f ` A ) e. D ) |
| 12 | 9 | simp2d | |- ( ( ( A e. V /\ B e. W ) /\ f : { A , B } --> D ) -> ( f ` B ) e. D ) |
| 13 | 3 4 7 12 | syl21anc | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( f : { A , B } -1-1-> D /\ ph ) ) -> ( f ` B ) e. D ) |
| 14 | prid1g | |- ( A e. V -> A e. { A , B } ) |
|
| 15 | 3 14 | syl | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( f : { A , B } -1-1-> D /\ ph ) ) -> A e. { A , B } ) |
| 16 | prid2g | |- ( B e. W -> B e. { A , B } ) |
|
| 17 | 4 16 | syl | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( f : { A , B } -1-1-> D /\ ph ) ) -> B e. { A , B } ) |
| 18 | 15 17 | jca | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( f : { A , B } -1-1-> D /\ ph ) ) -> ( A e. { A , B } /\ B e. { A , B } ) ) |
| 19 | simpl3 | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( f : { A , B } -1-1-> D /\ ph ) ) -> A =/= B ) |
|
| 20 | f1veqaeq | |- ( ( f : { A , B } -1-1-> D /\ ( A e. { A , B } /\ B e. { A , B } ) ) -> ( ( f ` A ) = ( f ` B ) -> A = B ) ) |
|
| 21 | 20 | necon3d | |- ( ( f : { A , B } -1-1-> D /\ ( A e. { A , B } /\ B e. { A , B } ) ) -> ( A =/= B -> ( f ` A ) =/= ( f ` B ) ) ) |
| 22 | 21 | imp | |- ( ( ( f : { A , B } -1-1-> D /\ ( A e. { A , B } /\ B e. { A , B } ) ) /\ A =/= B ) -> ( f ` A ) =/= ( f ` B ) ) |
| 23 | 5 18 19 22 | syl21anc | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( f : { A , B } -1-1-> D /\ ph ) ) -> ( f ` A ) =/= ( f ` B ) ) |
| 24 | simprr | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( f : { A , B } -1-1-> D /\ ph ) ) -> ph ) |
|
| 25 | 23 24 | jca | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( f : { A , B } -1-1-> D /\ ph ) ) -> ( ( f ` A ) =/= ( f ` B ) /\ ph ) ) |
| 26 | neeq1 | |- ( x = ( f ` A ) -> ( x =/= y <-> ( f ` A ) =/= y ) ) |
|
| 27 | 26 1 | anbi12d | |- ( x = ( f ` A ) -> ( ( x =/= y /\ ps ) <-> ( ( f ` A ) =/= y /\ ch ) ) ) |
| 28 | neeq2 | |- ( y = ( f ` B ) -> ( ( f ` A ) =/= y <-> ( f ` A ) =/= ( f ` B ) ) ) |
|
| 29 | 28 2 | anbi12d | |- ( y = ( f ` B ) -> ( ( ( f ` A ) =/= y /\ ch ) <-> ( ( f ` A ) =/= ( f ` B ) /\ ph ) ) ) |
| 30 | 27 29 | rspc2ev | |- ( ( ( f ` A ) e. D /\ ( f ` B ) e. D /\ ( ( f ` A ) =/= ( f ` B ) /\ ph ) ) -> E. x e. D E. y e. D ( x =/= y /\ ps ) ) |
| 31 | 11 13 25 30 | syl3anc | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( f : { A , B } -1-1-> D /\ ph ) ) -> E. x e. D E. y e. D ( x =/= y /\ ps ) ) |
| 32 | 31 | ex | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( ( f : { A , B } -1-1-> D /\ ph ) -> E. x e. D E. y e. D ( x =/= y /\ ps ) ) ) |
| 33 | 32 | exlimdv | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( E. f ( f : { A , B } -1-1-> D /\ ph ) -> E. x e. D E. y e. D ( x =/= y /\ ps ) ) ) |
| 34 | simpll1 | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> A e. V ) |
|
| 35 | simplrl | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> x e. D ) |
|
| 36 | 34 35 | jca | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> ( A e. V /\ x e. D ) ) |
| 37 | simpll2 | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> B e. W ) |
|
| 38 | simplrr | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> y e. D ) |
|
| 39 | 37 38 | jca | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> ( B e. W /\ y e. D ) ) |
| 40 | simpll3 | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> A =/= B ) |
|
| 41 | simprl | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> x =/= y ) |
|
| 42 | f1oprg | |- ( ( ( A e. V /\ x e. D ) /\ ( B e. W /\ y e. D ) ) -> ( ( A =/= B /\ x =/= y ) -> { <. A , x >. , <. B , y >. } : { A , B } -1-1-onto-> { x , y } ) ) |
|
| 43 | 42 | imp | |- ( ( ( ( A e. V /\ x e. D ) /\ ( B e. W /\ y e. D ) ) /\ ( A =/= B /\ x =/= y ) ) -> { <. A , x >. , <. B , y >. } : { A , B } -1-1-onto-> { x , y } ) |
| 44 | 36 39 40 41 43 | syl22anc | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> { <. A , x >. , <. B , y >. } : { A , B } -1-1-onto-> { x , y } ) |
| 45 | f1of1 | |- ( { <. A , x >. , <. B , y >. } : { A , B } -1-1-onto-> { x , y } -> { <. A , x >. , <. B , y >. } : { A , B } -1-1-> { x , y } ) |
|
| 46 | 44 45 | syl | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> { <. A , x >. , <. B , y >. } : { A , B } -1-1-> { x , y } ) |
| 47 | 35 38 | prssd | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> { x , y } C_ D ) |
| 48 | f1ss | |- ( ( { <. A , x >. , <. B , y >. } : { A , B } -1-1-> { x , y } /\ { x , y } C_ D ) -> { <. A , x >. , <. B , y >. } : { A , B } -1-1-> D ) |
|
| 49 | 46 47 48 | syl2anc | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> { <. A , x >. , <. B , y >. } : { A , B } -1-1-> D ) |
| 50 | fvpr1g | |- ( ( A e. V /\ x e. D /\ A =/= B ) -> ( { <. A , x >. , <. B , y >. } ` A ) = x ) |
|
| 51 | 50 | eqcomd | |- ( ( A e. V /\ x e. D /\ A =/= B ) -> x = ( { <. A , x >. , <. B , y >. } ` A ) ) |
| 52 | 34 35 40 51 | syl3anc | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> x = ( { <. A , x >. , <. B , y >. } ` A ) ) |
| 53 | fvpr2g | |- ( ( B e. W /\ y e. D /\ A =/= B ) -> ( { <. A , x >. , <. B , y >. } ` B ) = y ) |
|
| 54 | 53 | eqcomd | |- ( ( B e. W /\ y e. D /\ A =/= B ) -> y = ( { <. A , x >. , <. B , y >. } ` B ) ) |
| 55 | 37 38 40 54 | syl3anc | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> y = ( { <. A , x >. , <. B , y >. } ` B ) ) |
| 56 | prex | |- { <. A , x >. , <. B , y >. } e. _V |
|
| 57 | f1eq1 | |- ( f = { <. A , x >. , <. B , y >. } -> ( f : { A , B } -1-1-> D <-> { <. A , x >. , <. B , y >. } : { A , B } -1-1-> D ) ) |
|
| 58 | fveq1 | |- ( f = { <. A , x >. , <. B , y >. } -> ( f ` A ) = ( { <. A , x >. , <. B , y >. } ` A ) ) |
|
| 59 | 58 | eqeq2d | |- ( f = { <. A , x >. , <. B , y >. } -> ( x = ( f ` A ) <-> x = ( { <. A , x >. , <. B , y >. } ` A ) ) ) |
| 60 | fveq1 | |- ( f = { <. A , x >. , <. B , y >. } -> ( f ` B ) = ( { <. A , x >. , <. B , y >. } ` B ) ) |
|
| 61 | 60 | eqeq2d | |- ( f = { <. A , x >. , <. B , y >. } -> ( y = ( f ` B ) <-> y = ( { <. A , x >. , <. B , y >. } ` B ) ) ) |
| 62 | 59 61 | anbi12d | |- ( f = { <. A , x >. , <. B , y >. } -> ( ( x = ( f ` A ) /\ y = ( f ` B ) ) <-> ( x = ( { <. A , x >. , <. B , y >. } ` A ) /\ y = ( { <. A , x >. , <. B , y >. } ` B ) ) ) ) |
| 63 | 57 62 | anbi12d | |- ( f = { <. A , x >. , <. B , y >. } -> ( ( f : { A , B } -1-1-> D /\ ( x = ( f ` A ) /\ y = ( f ` B ) ) ) <-> ( { <. A , x >. , <. B , y >. } : { A , B } -1-1-> D /\ ( x = ( { <. A , x >. , <. B , y >. } ` A ) /\ y = ( { <. A , x >. , <. B , y >. } ` B ) ) ) ) ) |
| 64 | 56 63 | spcev | |- ( ( { <. A , x >. , <. B , y >. } : { A , B } -1-1-> D /\ ( x = ( { <. A , x >. , <. B , y >. } ` A ) /\ y = ( { <. A , x >. , <. B , y >. } ` B ) ) ) -> E. f ( f : { A , B } -1-1-> D /\ ( x = ( f ` A ) /\ y = ( f ` B ) ) ) ) |
| 65 | 49 52 55 64 | syl12anc | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> E. f ( f : { A , B } -1-1-> D /\ ( x = ( f ` A ) /\ y = ( f ` B ) ) ) ) |
| 66 | simprl | |- ( ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) /\ ( f : { A , B } -1-1-> D /\ ( x = ( f ` A ) /\ y = ( f ` B ) ) ) ) -> f : { A , B } -1-1-> D ) |
|
| 67 | simplrr | |- ( ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) /\ ( f : { A , B } -1-1-> D /\ ( x = ( f ` A ) /\ y = ( f ` B ) ) ) ) -> ps ) |
|
| 68 | simprrl | |- ( ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) /\ ( f : { A , B } -1-1-> D /\ ( x = ( f ` A ) /\ y = ( f ` B ) ) ) ) -> x = ( f ` A ) ) |
|
| 69 | 68 1 | syl | |- ( ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) /\ ( f : { A , B } -1-1-> D /\ ( x = ( f ` A ) /\ y = ( f ` B ) ) ) ) -> ( ps <-> ch ) ) |
| 70 | 67 69 | mpbid | |- ( ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) /\ ( f : { A , B } -1-1-> D /\ ( x = ( f ` A ) /\ y = ( f ` B ) ) ) ) -> ch ) |
| 71 | simprrr | |- ( ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) /\ ( f : { A , B } -1-1-> D /\ ( x = ( f ` A ) /\ y = ( f ` B ) ) ) ) -> y = ( f ` B ) ) |
|
| 72 | 71 2 | syl | |- ( ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) /\ ( f : { A , B } -1-1-> D /\ ( x = ( f ` A ) /\ y = ( f ` B ) ) ) ) -> ( ch <-> ph ) ) |
| 73 | 70 72 | mpbid | |- ( ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) /\ ( f : { A , B } -1-1-> D /\ ( x = ( f ` A ) /\ y = ( f ` B ) ) ) ) -> ph ) |
| 74 | 66 73 | jca | |- ( ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) /\ ( f : { A , B } -1-1-> D /\ ( x = ( f ` A ) /\ y = ( f ` B ) ) ) ) -> ( f : { A , B } -1-1-> D /\ ph ) ) |
| 75 | 74 | ex | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> ( ( f : { A , B } -1-1-> D /\ ( x = ( f ` A ) /\ y = ( f ` B ) ) ) -> ( f : { A , B } -1-1-> D /\ ph ) ) ) |
| 76 | 75 | eximdv | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> ( E. f ( f : { A , B } -1-1-> D /\ ( x = ( f ` A ) /\ y = ( f ` B ) ) ) -> E. f ( f : { A , B } -1-1-> D /\ ph ) ) ) |
| 77 | 65 76 | mpd | |- ( ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) /\ ( x =/= y /\ ps ) ) -> E. f ( f : { A , B } -1-1-> D /\ ph ) ) |
| 78 | 77 | ex | |- ( ( ( A e. V /\ B e. W /\ A =/= B ) /\ ( x e. D /\ y e. D ) ) -> ( ( x =/= y /\ ps ) -> E. f ( f : { A , B } -1-1-> D /\ ph ) ) ) |
| 79 | 78 | rexlimdvva | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( E. x e. D E. y e. D ( x =/= y /\ ps ) -> E. f ( f : { A , B } -1-1-> D /\ ph ) ) ) |
| 80 | 33 79 | impbid | |- ( ( A e. V /\ B e. W /\ A =/= B ) -> ( E. f ( f : { A , B } -1-1-> D /\ ph ) <-> E. x e. D E. y e. D ( x =/= y /\ ps ) ) ) |