This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function that maps a pair to a class is a pair of ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fpr2g | |- ( ( A e. V /\ B e. W ) -> ( F : { A , B } --> C <-> ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> F : { A , B } --> C ) |
|
| 2 | prid1g | |- ( A e. V -> A e. { A , B } ) |
|
| 3 | 2 | ad2antrr | |- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> A e. { A , B } ) |
| 4 | 1 3 | ffvelcdmd | |- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> ( F ` A ) e. C ) |
| 5 | prid2g | |- ( B e. W -> B e. { A , B } ) |
|
| 6 | 5 | ad2antlr | |- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> B e. { A , B } ) |
| 7 | 1 6 | ffvelcdmd | |- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> ( F ` B ) e. C ) |
| 8 | ffn | |- ( F : { A , B } --> C -> F Fn { A , B } ) |
|
| 9 | 8 | adantl | |- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> F Fn { A , B } ) |
| 10 | fnpr2g | |- ( ( A e. V /\ B e. W ) -> ( F Fn { A , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) |
|
| 11 | 10 | adantr | |- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> ( F Fn { A , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) |
| 12 | 9 11 | mpbid | |- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) |
| 13 | 4 7 12 | 3jca | |- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) |
| 14 | 10 | biimpar | |- ( ( ( A e. V /\ B e. W ) /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) -> F Fn { A , B } ) |
| 15 | 14 | 3ad2antr3 | |- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> F Fn { A , B } ) |
| 16 | simpr3 | |- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) |
|
| 17 | 2 | ad2antrr | |- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> A e. { A , B } ) |
| 18 | simpr1 | |- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> ( F ` A ) e. C ) |
|
| 19 | 17 18 | opelxpd | |- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> <. A , ( F ` A ) >. e. ( { A , B } X. C ) ) |
| 20 | 5 | ad2antlr | |- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> B e. { A , B } ) |
| 21 | simpr2 | |- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> ( F ` B ) e. C ) |
|
| 22 | 20 21 | opelxpd | |- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> <. B , ( F ` B ) >. e. ( { A , B } X. C ) ) |
| 23 | 19 22 | prssd | |- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } C_ ( { A , B } X. C ) ) |
| 24 | 16 23 | eqsstrd | |- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> F C_ ( { A , B } X. C ) ) |
| 25 | dff2 | |- ( F : { A , B } --> C <-> ( F Fn { A , B } /\ F C_ ( { A , B } X. C ) ) ) |
|
| 26 | 15 24 25 | sylanbrc | |- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> F : { A , B } --> C ) |
| 27 | 13 26 | impbida | |- ( ( A e. V /\ B e. W ) -> ( F : { A , B } --> C <-> ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) ) |