This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound on A ^ N when 2 <_ A . (Contributed by NM, 19-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expubnd | |- ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( A ^ N ) <_ ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> A e. RR ) |
|
| 2 | 2re | |- 2 e. RR |
|
| 3 | peano2rem | |- ( A e. RR -> ( A - 1 ) e. RR ) |
|
| 4 | remulcl | |- ( ( 2 e. RR /\ ( A - 1 ) e. RR ) -> ( 2 x. ( A - 1 ) ) e. RR ) |
|
| 5 | 2 3 4 | sylancr | |- ( A e. RR -> ( 2 x. ( A - 1 ) ) e. RR ) |
| 6 | 5 | 3ad2ant1 | |- ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( 2 x. ( A - 1 ) ) e. RR ) |
| 7 | simp2 | |- ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> N e. NN0 ) |
|
| 8 | 0le2 | |- 0 <_ 2 |
|
| 9 | 0re | |- 0 e. RR |
|
| 10 | letr | |- ( ( 0 e. RR /\ 2 e. RR /\ A e. RR ) -> ( ( 0 <_ 2 /\ 2 <_ A ) -> 0 <_ A ) ) |
|
| 11 | 9 2 10 | mp3an12 | |- ( A e. RR -> ( ( 0 <_ 2 /\ 2 <_ A ) -> 0 <_ A ) ) |
| 12 | 8 11 | mpani | |- ( A e. RR -> ( 2 <_ A -> 0 <_ A ) ) |
| 13 | 12 | imp | |- ( ( A e. RR /\ 2 <_ A ) -> 0 <_ A ) |
| 14 | resubcl | |- ( ( A e. RR /\ 2 e. RR ) -> ( A - 2 ) e. RR ) |
|
| 15 | 2 14 | mpan2 | |- ( A e. RR -> ( A - 2 ) e. RR ) |
| 16 | leadd2 | |- ( ( 2 e. RR /\ A e. RR /\ ( A - 2 ) e. RR ) -> ( 2 <_ A <-> ( ( A - 2 ) + 2 ) <_ ( ( A - 2 ) + A ) ) ) |
|
| 17 | 2 16 | mp3an1 | |- ( ( A e. RR /\ ( A - 2 ) e. RR ) -> ( 2 <_ A <-> ( ( A - 2 ) + 2 ) <_ ( ( A - 2 ) + A ) ) ) |
| 18 | 15 17 | mpdan | |- ( A e. RR -> ( 2 <_ A <-> ( ( A - 2 ) + 2 ) <_ ( ( A - 2 ) + A ) ) ) |
| 19 | 18 | biimpa | |- ( ( A e. RR /\ 2 <_ A ) -> ( ( A - 2 ) + 2 ) <_ ( ( A - 2 ) + A ) ) |
| 20 | recn | |- ( A e. RR -> A e. CC ) |
|
| 21 | 2cn | |- 2 e. CC |
|
| 22 | npcan | |- ( ( A e. CC /\ 2 e. CC ) -> ( ( A - 2 ) + 2 ) = A ) |
|
| 23 | 20 21 22 | sylancl | |- ( A e. RR -> ( ( A - 2 ) + 2 ) = A ) |
| 24 | 23 | adantr | |- ( ( A e. RR /\ 2 <_ A ) -> ( ( A - 2 ) + 2 ) = A ) |
| 25 | ax-1cn | |- 1 e. CC |
|
| 26 | subdi | |- ( ( 2 e. CC /\ A e. CC /\ 1 e. CC ) -> ( 2 x. ( A - 1 ) ) = ( ( 2 x. A ) - ( 2 x. 1 ) ) ) |
|
| 27 | 21 25 26 | mp3an13 | |- ( A e. CC -> ( 2 x. ( A - 1 ) ) = ( ( 2 x. A ) - ( 2 x. 1 ) ) ) |
| 28 | 2times | |- ( A e. CC -> ( 2 x. A ) = ( A + A ) ) |
|
| 29 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 30 | 29 | a1i | |- ( A e. CC -> ( 2 x. 1 ) = 2 ) |
| 31 | 28 30 | oveq12d | |- ( A e. CC -> ( ( 2 x. A ) - ( 2 x. 1 ) ) = ( ( A + A ) - 2 ) ) |
| 32 | addsub | |- ( ( A e. CC /\ A e. CC /\ 2 e. CC ) -> ( ( A + A ) - 2 ) = ( ( A - 2 ) + A ) ) |
|
| 33 | 21 32 | mp3an3 | |- ( ( A e. CC /\ A e. CC ) -> ( ( A + A ) - 2 ) = ( ( A - 2 ) + A ) ) |
| 34 | 33 | anidms | |- ( A e. CC -> ( ( A + A ) - 2 ) = ( ( A - 2 ) + A ) ) |
| 35 | 27 31 34 | 3eqtrrd | |- ( A e. CC -> ( ( A - 2 ) + A ) = ( 2 x. ( A - 1 ) ) ) |
| 36 | 20 35 | syl | |- ( A e. RR -> ( ( A - 2 ) + A ) = ( 2 x. ( A - 1 ) ) ) |
| 37 | 36 | adantr | |- ( ( A e. RR /\ 2 <_ A ) -> ( ( A - 2 ) + A ) = ( 2 x. ( A - 1 ) ) ) |
| 38 | 19 24 37 | 3brtr3d | |- ( ( A e. RR /\ 2 <_ A ) -> A <_ ( 2 x. ( A - 1 ) ) ) |
| 39 | 13 38 | jca | |- ( ( A e. RR /\ 2 <_ A ) -> ( 0 <_ A /\ A <_ ( 2 x. ( A - 1 ) ) ) ) |
| 40 | 39 | 3adant2 | |- ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( 0 <_ A /\ A <_ ( 2 x. ( A - 1 ) ) ) ) |
| 41 | leexp1a | |- ( ( ( A e. RR /\ ( 2 x. ( A - 1 ) ) e. RR /\ N e. NN0 ) /\ ( 0 <_ A /\ A <_ ( 2 x. ( A - 1 ) ) ) ) -> ( A ^ N ) <_ ( ( 2 x. ( A - 1 ) ) ^ N ) ) |
|
| 42 | 1 6 7 40 41 | syl31anc | |- ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( A ^ N ) <_ ( ( 2 x. ( A - 1 ) ) ^ N ) ) |
| 43 | 3 | recnd | |- ( A e. RR -> ( A - 1 ) e. CC ) |
| 44 | mulexp | |- ( ( 2 e. CC /\ ( A - 1 ) e. CC /\ N e. NN0 ) -> ( ( 2 x. ( A - 1 ) ) ^ N ) = ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) |
|
| 45 | 21 44 | mp3an1 | |- ( ( ( A - 1 ) e. CC /\ N e. NN0 ) -> ( ( 2 x. ( A - 1 ) ) ^ N ) = ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) |
| 46 | 43 45 | sylan | |- ( ( A e. RR /\ N e. NN0 ) -> ( ( 2 x. ( A - 1 ) ) ^ N ) = ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) |
| 47 | 46 | 3adant3 | |- ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( ( 2 x. ( A - 1 ) ) ^ N ) = ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) |
| 48 | 42 47 | breqtrd | |- ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( A ^ N ) <_ ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) |