This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for addition and subtraction. (Contributed by NM, 19-Aug-2001) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addsub | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - C ) = ( ( A - C ) + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcom | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
|
| 2 | 1 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - C ) = ( ( B + A ) - C ) ) |
| 3 | 2 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - C ) = ( ( B + A ) - C ) ) |
| 4 | addsubass | |- ( ( B e. CC /\ A e. CC /\ C e. CC ) -> ( ( B + A ) - C ) = ( B + ( A - C ) ) ) |
|
| 5 | 4 | 3com12 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B + A ) - C ) = ( B + ( A - C ) ) ) |
| 6 | subcl | |- ( ( A e. CC /\ C e. CC ) -> ( A - C ) e. CC ) |
|
| 7 | addcom | |- ( ( B e. CC /\ ( A - C ) e. CC ) -> ( B + ( A - C ) ) = ( ( A - C ) + B ) ) |
|
| 8 | 6 7 | sylan2 | |- ( ( B e. CC /\ ( A e. CC /\ C e. CC ) ) -> ( B + ( A - C ) ) = ( ( A - C ) + B ) ) |
| 9 | 8 | 3impb | |- ( ( B e. CC /\ A e. CC /\ C e. CC ) -> ( B + ( A - C ) ) = ( ( A - C ) + B ) ) |
| 10 | 9 | 3com12 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B + ( A - C ) ) = ( ( A - C ) + B ) ) |
| 11 | 3 5 10 | 3eqtrd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - C ) = ( ( A - C ) + B ) ) |