This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two squres of reals is zero if and only if both reals are zero. (Contributed by NM, 29-Apr-2005) (Revised by Stefan O'Rear, 5-Oct-2014) (Proof shortened by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sumsqeq0 | |- ( ( A e. RR /\ B e. RR ) -> ( ( A = 0 /\ B = 0 ) <-> ( ( A ^ 2 ) + ( B ^ 2 ) ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqcl | |- ( A e. RR -> ( A ^ 2 ) e. RR ) |
|
| 2 | sqge0 | |- ( A e. RR -> 0 <_ ( A ^ 2 ) ) |
|
| 3 | 1 2 | jca | |- ( A e. RR -> ( ( A ^ 2 ) e. RR /\ 0 <_ ( A ^ 2 ) ) ) |
| 4 | resqcl | |- ( B e. RR -> ( B ^ 2 ) e. RR ) |
|
| 5 | sqge0 | |- ( B e. RR -> 0 <_ ( B ^ 2 ) ) |
|
| 6 | 4 5 | jca | |- ( B e. RR -> ( ( B ^ 2 ) e. RR /\ 0 <_ ( B ^ 2 ) ) ) |
| 7 | add20 | |- ( ( ( ( A ^ 2 ) e. RR /\ 0 <_ ( A ^ 2 ) ) /\ ( ( B ^ 2 ) e. RR /\ 0 <_ ( B ^ 2 ) ) ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = 0 <-> ( ( A ^ 2 ) = 0 /\ ( B ^ 2 ) = 0 ) ) ) |
|
| 8 | 3 6 7 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) = 0 <-> ( ( A ^ 2 ) = 0 /\ ( B ^ 2 ) = 0 ) ) ) |
| 9 | recn | |- ( A e. RR -> A e. CC ) |
|
| 10 | sqeq0 | |- ( A e. CC -> ( ( A ^ 2 ) = 0 <-> A = 0 ) ) |
|
| 11 | 9 10 | syl | |- ( A e. RR -> ( ( A ^ 2 ) = 0 <-> A = 0 ) ) |
| 12 | recn | |- ( B e. RR -> B e. CC ) |
|
| 13 | sqeq0 | |- ( B e. CC -> ( ( B ^ 2 ) = 0 <-> B = 0 ) ) |
|
| 14 | 12 13 | syl | |- ( B e. RR -> ( ( B ^ 2 ) = 0 <-> B = 0 ) ) |
| 15 | 11 14 | bi2anan9 | |- ( ( A e. RR /\ B e. RR ) -> ( ( ( A ^ 2 ) = 0 /\ ( B ^ 2 ) = 0 ) <-> ( A = 0 /\ B = 0 ) ) ) |
| 16 | 8 15 | bitr2d | |- ( ( A e. RR /\ B e. RR ) -> ( ( A = 0 /\ B = 0 ) <-> ( ( A ^ 2 ) + ( B ^ 2 ) ) = 0 ) ) |