This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for expclz . (Contributed by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expclzlem | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. ( CC \ { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | |- ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) |
|
| 2 | difss | |- ( CC \ { 0 } ) C_ CC |
|
| 3 | eldifsn | |- ( x e. ( CC \ { 0 } ) <-> ( x e. CC /\ x =/= 0 ) ) |
|
| 4 | eldifsn | |- ( y e. ( CC \ { 0 } ) <-> ( y e. CC /\ y =/= 0 ) ) |
|
| 5 | mulcl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
|
| 6 | 5 | ad2ant2r | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) e. CC ) |
| 7 | mulne0 | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) =/= 0 ) |
|
| 8 | eldifsn | |- ( ( x x. y ) e. ( CC \ { 0 } ) <-> ( ( x x. y ) e. CC /\ ( x x. y ) =/= 0 ) ) |
|
| 9 | 6 7 8 | sylanbrc | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) e. ( CC \ { 0 } ) ) |
| 10 | 3 4 9 | syl2anb | |- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x x. y ) e. ( CC \ { 0 } ) ) |
| 11 | ax-1cn | |- 1 e. CC |
|
| 12 | ax-1ne0 | |- 1 =/= 0 |
|
| 13 | eldifsn | |- ( 1 e. ( CC \ { 0 } ) <-> ( 1 e. CC /\ 1 =/= 0 ) ) |
|
| 14 | 11 12 13 | mpbir2an | |- 1 e. ( CC \ { 0 } ) |
| 15 | reccl | |- ( ( x e. CC /\ x =/= 0 ) -> ( 1 / x ) e. CC ) |
|
| 16 | recne0 | |- ( ( x e. CC /\ x =/= 0 ) -> ( 1 / x ) =/= 0 ) |
|
| 17 | 15 16 | jca | |- ( ( x e. CC /\ x =/= 0 ) -> ( ( 1 / x ) e. CC /\ ( 1 / x ) =/= 0 ) ) |
| 18 | eldifsn | |- ( ( 1 / x ) e. ( CC \ { 0 } ) <-> ( ( 1 / x ) e. CC /\ ( 1 / x ) =/= 0 ) ) |
|
| 19 | 17 3 18 | 3imtr4i | |- ( x e. ( CC \ { 0 } ) -> ( 1 / x ) e. ( CC \ { 0 } ) ) |
| 20 | 19 | adantr | |- ( ( x e. ( CC \ { 0 } ) /\ x =/= 0 ) -> ( 1 / x ) e. ( CC \ { 0 } ) ) |
| 21 | 2 10 14 20 | expcl2lem | |- ( ( A e. ( CC \ { 0 } ) /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. ( CC \ { 0 } ) ) |
| 22 | 21 | 3expia | |- ( ( A e. ( CC \ { 0 } ) /\ A =/= 0 ) -> ( N e. ZZ -> ( A ^ N ) e. ( CC \ { 0 } ) ) ) |
| 23 | 1 22 | sylanbr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ A =/= 0 ) -> ( N e. ZZ -> ( A ^ N ) e. ( CC \ { 0 } ) ) ) |
| 24 | 23 | anabss3 | |- ( ( A e. CC /\ A =/= 0 ) -> ( N e. ZZ -> ( A ^ N ) e. ( CC \ { 0 } ) ) ) |
| 25 | 24 | 3impia | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. ( CC \ { 0 } ) ) |