This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number smaller than the lower bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltnelicc.a | |- ( ph -> A e. RR ) |
|
| ltnelicc.b | |- ( ph -> B e. RR* ) |
||
| ltnelicc.c | |- ( ph -> C e. RR* ) |
||
| ltnelicc.clta | |- ( ph -> C < A ) |
||
| Assertion | ltnelicc | |- ( ph -> -. C e. ( A [,] B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltnelicc.a | |- ( ph -> A e. RR ) |
|
| 2 | ltnelicc.b | |- ( ph -> B e. RR* ) |
|
| 3 | ltnelicc.c | |- ( ph -> C e. RR* ) |
|
| 4 | ltnelicc.clta | |- ( ph -> C < A ) |
|
| 5 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 6 | xrltnle | |- ( ( C e. RR* /\ A e. RR* ) -> ( C < A <-> -. A <_ C ) ) |
|
| 7 | 3 5 6 | syl2anc | |- ( ph -> ( C < A <-> -. A <_ C ) ) |
| 8 | 4 7 | mpbid | |- ( ph -> -. A <_ C ) |
| 9 | 8 | intnanrd | |- ( ph -> -. ( A <_ C /\ C <_ B ) ) |
| 10 | elicc4 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) |
|
| 11 | 5 2 3 10 | syl3anc | |- ( ph -> ( C e. ( A [,] B ) <-> ( A <_ C /\ C <_ B ) ) ) |
| 12 | 9 11 | mtbird | |- ( ph -> -. C e. ( A [,] B ) ) |