This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the evaluation map for the polynomial algebra. The function ( ( I evalSub S )R ) : V --> ( S ^m ( S ^m I ) ) makes sense when I is an index set, S is a ring, R is a subring of S , and where V is the set of polynomials in ( I mPoly R ) . This function maps an element of the formal polynomial algebra (with coefficients in R ) to a function from assignments I --> S of the variables to elements of S formed by evaluating the polynomial with the given assignments. (Contributed by Stefan O'Rear, 11-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-evls | |- evalSub = ( i e. _V , s e. CRing |-> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ces | |- evalSub |
|
| 1 | vi | |- i |
|
| 2 | cvv | |- _V |
|
| 3 | vs | |- s |
|
| 4 | ccrg | |- CRing |
|
| 5 | cbs | |- Base |
|
| 6 | 3 | cv | |- s |
| 7 | 6 5 | cfv | |- ( Base ` s ) |
| 8 | vb | |- b |
|
| 9 | vr | |- r |
|
| 10 | csubrg | |- SubRing |
|
| 11 | 6 10 | cfv | |- ( SubRing ` s ) |
| 12 | 1 | cv | |- i |
| 13 | cmpl | |- mPoly |
|
| 14 | cress | |- |`s |
|
| 15 | 9 | cv | |- r |
| 16 | 6 15 14 | co | |- ( s |`s r ) |
| 17 | 12 16 13 | co | |- ( i mPoly ( s |`s r ) ) |
| 18 | vw | |- w |
|
| 19 | vf | |- f |
|
| 20 | 18 | cv | |- w |
| 21 | crh | |- RingHom |
|
| 22 | cpws | |- ^s |
|
| 23 | 8 | cv | |- b |
| 24 | cmap | |- ^m |
|
| 25 | 23 12 24 | co | |- ( b ^m i ) |
| 26 | 6 25 22 | co | |- ( s ^s ( b ^m i ) ) |
| 27 | 20 26 21 | co | |- ( w RingHom ( s ^s ( b ^m i ) ) ) |
| 28 | 19 | cv | |- f |
| 29 | cascl | |- algSc |
|
| 30 | 20 29 | cfv | |- ( algSc ` w ) |
| 31 | 28 30 | ccom | |- ( f o. ( algSc ` w ) ) |
| 32 | vx | |- x |
|
| 33 | 32 | cv | |- x |
| 34 | 33 | csn | |- { x } |
| 35 | 25 34 | cxp | |- ( ( b ^m i ) X. { x } ) |
| 36 | 32 15 35 | cmpt | |- ( x e. r |-> ( ( b ^m i ) X. { x } ) ) |
| 37 | 31 36 | wceq | |- ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) |
| 38 | cmvr | |- mVar |
|
| 39 | 12 16 38 | co | |- ( i mVar ( s |`s r ) ) |
| 40 | 28 39 | ccom | |- ( f o. ( i mVar ( s |`s r ) ) ) |
| 41 | vg | |- g |
|
| 42 | 41 | cv | |- g |
| 43 | 33 42 | cfv | |- ( g ` x ) |
| 44 | 41 25 43 | cmpt | |- ( g e. ( b ^m i ) |-> ( g ` x ) ) |
| 45 | 32 12 44 | cmpt | |- ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) |
| 46 | 40 45 | wceq | |- ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) |
| 47 | 37 46 | wa | |- ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) |
| 48 | 47 19 27 | crio | |- ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) |
| 49 | 18 17 48 | csb | |- [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) |
| 50 | 9 11 49 | cmpt | |- ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) |
| 51 | 8 7 50 | csb | |- [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) |
| 52 | 1 3 2 4 51 | cmpo | |- ( i e. _V , s e. CRing |-> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) ) |
| 53 | 0 52 | wceq | |- evalSub = ( i e. _V , s e. CRing |-> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) ) |