This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for a variable. (Contributed by SN, 27-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsvarval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsvarval.p | |- P = ( I mPoly U ) |
||
| evlsvarval.v | |- V = ( I mVar U ) |
||
| evlsvarval.u | |- U = ( S |`s R ) |
||
| evlsvarval.k | |- K = ( Base ` S ) |
||
| evlsvarval.b | |- B = ( Base ` P ) |
||
| evlsvarval.i | |- ( ph -> I e. W ) |
||
| evlsvarval.s | |- ( ph -> S e. CRing ) |
||
| evlsvarval.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlsvarval.x | |- ( ph -> X e. I ) |
||
| evlsvarval.a | |- ( ph -> A e. ( K ^m I ) ) |
||
| Assertion | evlsvarval | |- ( ph -> ( ( V ` X ) e. B /\ ( ( Q ` ( V ` X ) ) ` A ) = ( A ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsvarval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsvarval.p | |- P = ( I mPoly U ) |
|
| 3 | evlsvarval.v | |- V = ( I mVar U ) |
|
| 4 | evlsvarval.u | |- U = ( S |`s R ) |
|
| 5 | evlsvarval.k | |- K = ( Base ` S ) |
|
| 6 | evlsvarval.b | |- B = ( Base ` P ) |
|
| 7 | evlsvarval.i | |- ( ph -> I e. W ) |
|
| 8 | evlsvarval.s | |- ( ph -> S e. CRing ) |
|
| 9 | evlsvarval.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 10 | evlsvarval.x | |- ( ph -> X e. I ) |
|
| 11 | evlsvarval.a | |- ( ph -> A e. ( K ^m I ) ) |
|
| 12 | 4 | subrgring | |- ( R e. ( SubRing ` S ) -> U e. Ring ) |
| 13 | 9 12 | syl | |- ( ph -> U e. Ring ) |
| 14 | 2 3 6 7 13 10 | mvrcl | |- ( ph -> ( V ` X ) e. B ) |
| 15 | fveq1 | |- ( g = A -> ( g ` X ) = ( A ` X ) ) |
|
| 16 | 1 3 4 5 7 8 9 10 | evlsvar | |- ( ph -> ( Q ` ( V ` X ) ) = ( g e. ( K ^m I ) |-> ( g ` X ) ) ) |
| 17 | fvexd | |- ( ph -> ( A ` X ) e. _V ) |
|
| 18 | 15 16 11 17 | fvmptd4 | |- ( ph -> ( ( Q ` ( V ` X ) ) ` A ) = ( A ` X ) ) |
| 19 | 14 18 | jca | |- ( ph -> ( ( V ` X ) e. B /\ ( ( Q ` ( V ` X ) ) ` A ) = ( A ` X ) ) ) |