This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial evaluation builder for an exponential. See also evl1expd . (Contributed by Thierry Arnoux, 24-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1expd.q | |- Q = ( S evalSub1 R ) |
|
| evls1expd.k | |- K = ( Base ` S ) |
||
| evls1expd.w | |- W = ( Poly1 ` U ) |
||
| evls1expd.u | |- U = ( S |`s R ) |
||
| evls1expd.b | |- B = ( Base ` W ) |
||
| evls1expd.s | |- ( ph -> S e. CRing ) |
||
| evls1expd.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evls1expd.1 | |- ./\ = ( .g ` ( mulGrp ` W ) ) |
||
| evls1expd.2 | |- .^ = ( .g ` ( mulGrp ` S ) ) |
||
| evls1expd.n | |- ( ph -> N e. NN0 ) |
||
| evls1expd.m | |- ( ph -> M e. B ) |
||
| evls1expd.c | |- ( ph -> C e. K ) |
||
| Assertion | evls1expd | |- ( ph -> ( ( Q ` ( N ./\ M ) ) ` C ) = ( N .^ ( ( Q ` M ) ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1expd.q | |- Q = ( S evalSub1 R ) |
|
| 2 | evls1expd.k | |- K = ( Base ` S ) |
|
| 3 | evls1expd.w | |- W = ( Poly1 ` U ) |
|
| 4 | evls1expd.u | |- U = ( S |`s R ) |
|
| 5 | evls1expd.b | |- B = ( Base ` W ) |
|
| 6 | evls1expd.s | |- ( ph -> S e. CRing ) |
|
| 7 | evls1expd.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 8 | evls1expd.1 | |- ./\ = ( .g ` ( mulGrp ` W ) ) |
|
| 9 | evls1expd.2 | |- .^ = ( .g ` ( mulGrp ` S ) ) |
|
| 10 | evls1expd.n | |- ( ph -> N e. NN0 ) |
|
| 11 | evls1expd.m | |- ( ph -> M e. B ) |
|
| 12 | evls1expd.c | |- ( ph -> C e. K ) |
|
| 13 | eqid | |- ( mulGrp ` W ) = ( mulGrp ` W ) |
|
| 14 | 1 4 3 13 2 5 8 6 7 10 11 | evls1pw | |- ( ph -> ( Q ` ( N ./\ M ) ) = ( N ( .g ` ( mulGrp ` ( S ^s K ) ) ) ( Q ` M ) ) ) |
| 15 | 14 | fveq1d | |- ( ph -> ( ( Q ` ( N ./\ M ) ) ` C ) = ( ( N ( .g ` ( mulGrp ` ( S ^s K ) ) ) ( Q ` M ) ) ` C ) ) |
| 16 | eqid | |- ( S ^s K ) = ( S ^s K ) |
|
| 17 | eqid | |- ( Base ` ( S ^s K ) ) = ( Base ` ( S ^s K ) ) |
|
| 18 | eqid | |- ( mulGrp ` ( S ^s K ) ) = ( mulGrp ` ( S ^s K ) ) |
|
| 19 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 20 | eqid | |- ( .g ` ( mulGrp ` ( S ^s K ) ) ) = ( .g ` ( mulGrp ` ( S ^s K ) ) ) |
|
| 21 | 6 | crngringd | |- ( ph -> S e. Ring ) |
| 22 | 2 | fvexi | |- K e. _V |
| 23 | 22 | a1i | |- ( ph -> K e. _V ) |
| 24 | 1 2 16 4 3 | evls1rhm | |- ( ( S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom ( S ^s K ) ) ) |
| 25 | 6 7 24 | syl2anc | |- ( ph -> Q e. ( W RingHom ( S ^s K ) ) ) |
| 26 | 5 17 | rhmf | |- ( Q e. ( W RingHom ( S ^s K ) ) -> Q : B --> ( Base ` ( S ^s K ) ) ) |
| 27 | 25 26 | syl | |- ( ph -> Q : B --> ( Base ` ( S ^s K ) ) ) |
| 28 | 27 11 | ffvelcdmd | |- ( ph -> ( Q ` M ) e. ( Base ` ( S ^s K ) ) ) |
| 29 | 16 17 18 19 20 9 21 23 10 28 12 | pwsexpg | |- ( ph -> ( ( N ( .g ` ( mulGrp ` ( S ^s K ) ) ) ( Q ` M ) ) ` C ) = ( N .^ ( ( Q ` M ) ` C ) ) ) |
| 30 | 15 29 | eqtrd | |- ( ph -> ( ( Q ` ( N ./\ M ) ) ` C ) = ( N .^ ( ( Q ` M ) ` C ) ) ) |