This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial evaluation builder for an exponential. See also evl1expd . (Contributed by Thierry Arnoux, 24-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1expd.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| evls1expd.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evls1expd.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | ||
| evls1expd.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evls1expd.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| evls1expd.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evls1expd.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evls1expd.1 | ⊢ ∧ = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) | ||
| evls1expd.2 | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) | ||
| evls1expd.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| evls1expd.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) | ||
| evls1expd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | ||
| Assertion | evls1expd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ∧ 𝑀 ) ) ‘ 𝐶 ) = ( 𝑁 ↑ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1expd.q | ⊢ 𝑄 = ( 𝑆 evalSub1 𝑅 ) | |
| 2 | evls1expd.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 3 | evls1expd.w | ⊢ 𝑊 = ( Poly1 ‘ 𝑈 ) | |
| 4 | evls1expd.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 5 | evls1expd.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 6 | evls1expd.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 7 | evls1expd.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 8 | evls1expd.1 | ⊢ ∧ = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) | |
| 9 | evls1expd.2 | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑆 ) ) | |
| 10 | evls1expd.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 11 | evls1expd.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) | |
| 12 | evls1expd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | |
| 13 | eqid | ⊢ ( mulGrp ‘ 𝑊 ) = ( mulGrp ‘ 𝑊 ) | |
| 14 | 1 4 3 13 2 5 8 6 7 10 11 | evls1pw | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 ∧ 𝑀 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ( 𝑄 ‘ 𝑀 ) ) ) |
| 15 | 14 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ∧ 𝑀 ) ) ‘ 𝐶 ) = ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ( 𝑄 ‘ 𝑀 ) ) ‘ 𝐶 ) ) |
| 16 | eqid | ⊢ ( 𝑆 ↑s 𝐾 ) = ( 𝑆 ↑s 𝐾 ) | |
| 17 | eqid | ⊢ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) = ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) | |
| 18 | eqid | ⊢ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) = ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) | |
| 19 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 20 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) = ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) | |
| 21 | 6 | crngringd | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 22 | 2 | fvexi | ⊢ 𝐾 ∈ V |
| 23 | 22 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ V ) |
| 24 | 1 2 16 4 3 | evls1rhm | ⊢ ( ( 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
| 25 | 6 7 24 | syl2anc | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) ) |
| 26 | 5 17 | rhmf | ⊢ ( 𝑄 ∈ ( 𝑊 RingHom ( 𝑆 ↑s 𝐾 ) ) → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 27 | 25 26 | syl | ⊢ ( 𝜑 → 𝑄 : 𝐵 ⟶ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 28 | 27 11 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑆 ↑s 𝐾 ) ) ) |
| 29 | 16 17 18 19 20 9 21 23 10 28 12 | pwsexpg | ⊢ ( 𝜑 → ( ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑆 ↑s 𝐾 ) ) ) ( 𝑄 ‘ 𝑀 ) ) ‘ 𝐶 ) = ( 𝑁 ↑ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐶 ) ) ) |
| 30 | 15 29 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 𝑁 ∧ 𝑀 ) ) ‘ 𝐶 ) = ( 𝑁 ↑ ( ( 𝑄 ‘ 𝑀 ) ‘ 𝐶 ) ) ) |