This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 12-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsscasrng.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsscasrng.o | |- O = ( I eval S ) |
||
| evlsscasrng.w | |- W = ( I mPoly U ) |
||
| evlsscasrng.u | |- U = ( S |`s R ) |
||
| evlsscasrng.p | |- P = ( I mPoly S ) |
||
| evlsscasrng.b | |- B = ( Base ` S ) |
||
| evlsscasrng.a | |- A = ( algSc ` W ) |
||
| evlsscasrng.c | |- C = ( algSc ` P ) |
||
| evlsscasrng.i | |- ( ph -> I e. V ) |
||
| evlsscasrng.s | |- ( ph -> S e. CRing ) |
||
| evlsscasrng.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlsscasrng.x | |- ( ph -> X e. R ) |
||
| Assertion | evlsscasrng | |- ( ph -> ( Q ` ( A ` X ) ) = ( O ` ( C ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsscasrng.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsscasrng.o | |- O = ( I eval S ) |
|
| 3 | evlsscasrng.w | |- W = ( I mPoly U ) |
|
| 4 | evlsscasrng.u | |- U = ( S |`s R ) |
|
| 5 | evlsscasrng.p | |- P = ( I mPoly S ) |
|
| 6 | evlsscasrng.b | |- B = ( Base ` S ) |
|
| 7 | evlsscasrng.a | |- A = ( algSc ` W ) |
|
| 8 | evlsscasrng.c | |- C = ( algSc ` P ) |
|
| 9 | evlsscasrng.i | |- ( ph -> I e. V ) |
|
| 10 | evlsscasrng.s | |- ( ph -> S e. CRing ) |
|
| 11 | evlsscasrng.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 12 | evlsscasrng.x | |- ( ph -> X e. R ) |
|
| 13 | 6 | ressid | |- ( S e. CRing -> ( S |`s B ) = S ) |
| 14 | 13 | eqcomd | |- ( S e. CRing -> S = ( S |`s B ) ) |
| 15 | 10 14 | syl | |- ( ph -> S = ( S |`s B ) ) |
| 16 | 15 | oveq2d | |- ( ph -> ( I mPoly S ) = ( I mPoly ( S |`s B ) ) ) |
| 17 | 5 16 | eqtrid | |- ( ph -> P = ( I mPoly ( S |`s B ) ) ) |
| 18 | 17 | fveq2d | |- ( ph -> ( algSc ` P ) = ( algSc ` ( I mPoly ( S |`s B ) ) ) ) |
| 19 | 8 18 | eqtrid | |- ( ph -> C = ( algSc ` ( I mPoly ( S |`s B ) ) ) ) |
| 20 | 19 | fveq1d | |- ( ph -> ( C ` X ) = ( ( algSc ` ( I mPoly ( S |`s B ) ) ) ` X ) ) |
| 21 | 20 | fveq2d | |- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( C ` X ) ) = ( ( ( I evalSub S ) ` B ) ` ( ( algSc ` ( I mPoly ( S |`s B ) ) ) ` X ) ) ) |
| 22 | eqid | |- ( ( I evalSub S ) ` B ) = ( ( I evalSub S ) ` B ) |
|
| 23 | eqid | |- ( I mPoly ( S |`s B ) ) = ( I mPoly ( S |`s B ) ) |
|
| 24 | eqid | |- ( S |`s B ) = ( S |`s B ) |
|
| 25 | eqid | |- ( algSc ` ( I mPoly ( S |`s B ) ) ) = ( algSc ` ( I mPoly ( S |`s B ) ) ) |
|
| 26 | crngring | |- ( S e. CRing -> S e. Ring ) |
|
| 27 | 6 | subrgid | |- ( S e. Ring -> B e. ( SubRing ` S ) ) |
| 28 | 10 26 27 | 3syl | |- ( ph -> B e. ( SubRing ` S ) ) |
| 29 | 6 | subrgss | |- ( R e. ( SubRing ` S ) -> R C_ B ) |
| 30 | 11 29 | syl | |- ( ph -> R C_ B ) |
| 31 | 30 12 | sseldd | |- ( ph -> X e. B ) |
| 32 | 22 23 24 6 25 9 10 28 31 | evlssca | |- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( ( algSc ` ( I mPoly ( S |`s B ) ) ) ` X ) ) = ( ( B ^m I ) X. { X } ) ) |
| 33 | 21 32 | eqtrd | |- ( ph -> ( ( ( I evalSub S ) ` B ) ` ( C ` X ) ) = ( ( B ^m I ) X. { X } ) ) |
| 34 | 2 6 | evlval | |- O = ( ( I evalSub S ) ` B ) |
| 35 | 34 | a1i | |- ( ph -> O = ( ( I evalSub S ) ` B ) ) |
| 36 | 35 | fveq1d | |- ( ph -> ( O ` ( C ` X ) ) = ( ( ( I evalSub S ) ` B ) ` ( C ` X ) ) ) |
| 37 | 1 3 4 6 7 9 10 11 12 | evlssca | |- ( ph -> ( Q ` ( A ` X ) ) = ( ( B ^m I ) X. { X } ) ) |
| 38 | 33 36 37 | 3eqtr4rd | |- ( ph -> ( Q ` ( A ` X ) ) = ( O ` ( C ` X ) ) ) |