This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The simple evaluation map is a ring homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlval.q | |- Q = ( I eval R ) |
|
| evlval.b | |- B = ( Base ` R ) |
||
| evlrhm.w | |- W = ( I mPoly R ) |
||
| evlrhm.t | |- T = ( R ^s ( B ^m I ) ) |
||
| Assertion | evlrhm | |- ( ( I e. V /\ R e. CRing ) -> Q e. ( W RingHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlval.q | |- Q = ( I eval R ) |
|
| 2 | evlval.b | |- B = ( Base ` R ) |
|
| 3 | evlrhm.w | |- W = ( I mPoly R ) |
|
| 4 | evlrhm.t | |- T = ( R ^s ( B ^m I ) ) |
|
| 5 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 6 | 5 | adantl | |- ( ( I e. V /\ R e. CRing ) -> R e. Ring ) |
| 7 | 2 | subrgid | |- ( R e. Ring -> B e. ( SubRing ` R ) ) |
| 8 | 6 7 | syl | |- ( ( I e. V /\ R e. CRing ) -> B e. ( SubRing ` R ) ) |
| 9 | 1 2 | evlval | |- Q = ( ( I evalSub R ) ` B ) |
| 10 | eqid | |- ( I mPoly ( R |`s B ) ) = ( I mPoly ( R |`s B ) ) |
|
| 11 | eqid | |- ( R |`s B ) = ( R |`s B ) |
|
| 12 | 9 10 11 4 2 | evlsrhm | |- ( ( I e. V /\ R e. CRing /\ B e. ( SubRing ` R ) ) -> Q e. ( ( I mPoly ( R |`s B ) ) RingHom T ) ) |
| 13 | 8 12 | mpd3an3 | |- ( ( I e. V /\ R e. CRing ) -> Q e. ( ( I mPoly ( R |`s B ) ) RingHom T ) ) |
| 14 | 2 | ressid | |- ( R e. CRing -> ( R |`s B ) = R ) |
| 15 | 14 | adantl | |- ( ( I e. V /\ R e. CRing ) -> ( R |`s B ) = R ) |
| 16 | 15 | oveq2d | |- ( ( I e. V /\ R e. CRing ) -> ( I mPoly ( R |`s B ) ) = ( I mPoly R ) ) |
| 17 | 16 3 | eqtr4di | |- ( ( I e. V /\ R e. CRing ) -> ( I mPoly ( R |`s B ) ) = W ) |
| 18 | 17 | oveq1d | |- ( ( I e. V /\ R e. CRing ) -> ( ( I mPoly ( R |`s B ) ) RingHom T ) = ( W RingHom T ) ) |
| 19 | 13 18 | eleqtrd | |- ( ( I e. V /\ R e. CRing ) -> Q e. ( W RingHom T ) ) |