This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem notnotd

Description: Deduction associated with notnot and notnoti . (Contributed by Jarvin Udandy, 2-Sep-2016) Avoid biconditional. (Revised by Wolf Lammen, 27-Mar-2021)

Ref Expression
Hypothesis notnotd.1
|- ( ph -> ps )
Assertion notnotd
|- ( ph -> -. -. ps )

Proof

Step Hyp Ref Expression
1 notnotd.1
 |-  ( ph -> ps )
2 notnot
 |-  ( ps -> -. -. ps )
3 1 2 syl
 |-  ( ph -> -. -. ps )