This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the metric D is "strongly finer" than C (meaning that there is a positive real constant R such that C ( x , y ) <_ R x. D ( x , y ) ), all the D -Cauchy sequences are also C -Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | equivcau.1 | |- ( ph -> C e. ( Met ` X ) ) |
|
| equivcau.2 | |- ( ph -> D e. ( Met ` X ) ) |
||
| equivcau.3 | |- ( ph -> R e. RR+ ) |
||
| equivcau.4 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
||
| Assertion | equivcau | |- ( ph -> ( Cau ` D ) C_ ( Cau ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equivcau.1 | |- ( ph -> C e. ( Met ` X ) ) |
|
| 2 | equivcau.2 | |- ( ph -> D e. ( Met ` X ) ) |
|
| 3 | equivcau.3 | |- ( ph -> R e. RR+ ) |
|
| 4 | equivcau.4 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
|
| 5 | simpr | |- ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) -> r e. RR+ ) |
|
| 6 | 3 | ad2antrr | |- ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) -> R e. RR+ ) |
| 7 | 5 6 | rpdivcld | |- ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) -> ( r / R ) e. RR+ ) |
| 8 | oveq2 | |- ( s = ( r / R ) -> ( ( f ` k ) ( ball ` D ) s ) = ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) |
|
| 9 | 8 | feq3d | |- ( s = ( r / R ) -> ( ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) <-> ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) |
| 10 | 9 | rexbidv | |- ( s = ( r / R ) -> ( E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) <-> E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) |
| 11 | 10 | rspcv | |- ( ( r / R ) e. RR+ -> ( A. s e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) -> E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) |
| 12 | 7 11 | syl | |- ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) -> ( A. s e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) -> E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) |
| 13 | simprr | |- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) |
|
| 14 | elpmi | |- ( f e. ( X ^pm CC ) -> ( f : dom f --> X /\ dom f C_ CC ) ) |
|
| 15 | 14 | simpld | |- ( f e. ( X ^pm CC ) -> f : dom f --> X ) |
| 16 | 15 | ad3antlr | |- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> f : dom f --> X ) |
| 17 | resss | |- ( f |` ( ZZ>= ` k ) ) C_ f |
|
| 18 | dmss | |- ( ( f |` ( ZZ>= ` k ) ) C_ f -> dom ( f |` ( ZZ>= ` k ) ) C_ dom f ) |
|
| 19 | 17 18 | ax-mp | |- dom ( f |` ( ZZ>= ` k ) ) C_ dom f |
| 20 | uzid | |- ( k e. ZZ -> k e. ( ZZ>= ` k ) ) |
|
| 21 | 20 | ad2antrl | |- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> k e. ( ZZ>= ` k ) ) |
| 22 | fdm | |- ( ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) -> dom ( f |` ( ZZ>= ` k ) ) = ( ZZ>= ` k ) ) |
|
| 23 | 22 | ad2antll | |- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> dom ( f |` ( ZZ>= ` k ) ) = ( ZZ>= ` k ) ) |
| 24 | 21 23 | eleqtrrd | |- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> k e. dom ( f |` ( ZZ>= ` k ) ) ) |
| 25 | 19 24 | sselid | |- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> k e. dom f ) |
| 26 | 16 25 | ffvelcdmd | |- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> ( f ` k ) e. X ) |
| 27 | eqid | |- ( MetOpen ` C ) = ( MetOpen ` C ) |
|
| 28 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
| 29 | 27 28 1 2 3 4 | metss2lem | |- ( ( ph /\ ( x e. X /\ r e. RR+ ) ) -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) |
| 30 | 29 | expr | |- ( ( ph /\ x e. X ) -> ( r e. RR+ -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) ) |
| 31 | 30 | ralrimiva | |- ( ph -> A. x e. X ( r e. RR+ -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) ) |
| 32 | 31 | ad3antrrr | |- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> A. x e. X ( r e. RR+ -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) ) |
| 33 | simplr | |- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> r e. RR+ ) |
|
| 34 | oveq1 | |- ( x = ( f ` k ) -> ( x ( ball ` D ) ( r / R ) ) = ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) |
|
| 35 | oveq1 | |- ( x = ( f ` k ) -> ( x ( ball ` C ) r ) = ( ( f ` k ) ( ball ` C ) r ) ) |
|
| 36 | 34 35 | sseq12d | |- ( x = ( f ` k ) -> ( ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) <-> ( ( f ` k ) ( ball ` D ) ( r / R ) ) C_ ( ( f ` k ) ( ball ` C ) r ) ) ) |
| 37 | 36 | imbi2d | |- ( x = ( f ` k ) -> ( ( r e. RR+ -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) <-> ( r e. RR+ -> ( ( f ` k ) ( ball ` D ) ( r / R ) ) C_ ( ( f ` k ) ( ball ` C ) r ) ) ) ) |
| 38 | 37 | rspcv | |- ( ( f ` k ) e. X -> ( A. x e. X ( r e. RR+ -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) -> ( r e. RR+ -> ( ( f ` k ) ( ball ` D ) ( r / R ) ) C_ ( ( f ` k ) ( ball ` C ) r ) ) ) ) |
| 39 | 26 32 33 38 | syl3c | |- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> ( ( f ` k ) ( ball ` D ) ( r / R ) ) C_ ( ( f ` k ) ( ball ` C ) r ) ) |
| 40 | 13 39 | fssd | |- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ ( k e. ZZ /\ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) ) ) -> ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) ) |
| 41 | 40 | expr | |- ( ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) /\ k e. ZZ ) -> ( ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) -> ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) ) ) |
| 42 | 41 | reximdva | |- ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) -> ( E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) ( r / R ) ) -> E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) ) ) |
| 43 | 12 42 | syld | |- ( ( ( ph /\ f e. ( X ^pm CC ) ) /\ r e. RR+ ) -> ( A. s e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) -> E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) ) ) |
| 44 | 43 | ralrimdva | |- ( ( ph /\ f e. ( X ^pm CC ) ) -> ( A. s e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) -> A. r e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) ) ) |
| 45 | 44 | ss2rabdv | |- ( ph -> { f e. ( X ^pm CC ) | A. s e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) } C_ { f e. ( X ^pm CC ) | A. r e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) } ) |
| 46 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 47 | caufval | |- ( D e. ( *Met ` X ) -> ( Cau ` D ) = { f e. ( X ^pm CC ) | A. s e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) } ) |
|
| 48 | 2 46 47 | 3syl | |- ( ph -> ( Cau ` D ) = { f e. ( X ^pm CC ) | A. s e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) s ) } ) |
| 49 | metxmet | |- ( C e. ( Met ` X ) -> C e. ( *Met ` X ) ) |
|
| 50 | caufval | |- ( C e. ( *Met ` X ) -> ( Cau ` C ) = { f e. ( X ^pm CC ) | A. r e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) } ) |
|
| 51 | 1 49 50 | 3syl | |- ( ph -> ( Cau ` C ) = { f e. ( X ^pm CC ) | A. r e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` C ) r ) } ) |
| 52 | 45 48 51 | 3sstr4d | |- ( ph -> ( Cau ` D ) C_ ( Cau ` C ) ) |