This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqgval.x | |- X = ( Base ` G ) |
|
| eqgval.n | |- N = ( invg ` G ) |
||
| eqgval.p | |- .+ = ( +g ` G ) |
||
| eqgval.r | |- R = ( G ~QG S ) |
||
| Assertion | eqgfval | |- ( ( G e. V /\ S C_ X ) -> R = { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgval.x | |- X = ( Base ` G ) |
|
| 2 | eqgval.n | |- N = ( invg ` G ) |
|
| 3 | eqgval.p | |- .+ = ( +g ` G ) |
|
| 4 | eqgval.r | |- R = ( G ~QG S ) |
|
| 5 | elex | |- ( G e. V -> G e. _V ) |
|
| 6 | 1 | fvexi | |- X e. _V |
| 7 | 6 | ssex | |- ( S C_ X -> S e. _V ) |
| 8 | simpl | |- ( ( g = G /\ s = S ) -> g = G ) |
|
| 9 | 8 | fveq2d | |- ( ( g = G /\ s = S ) -> ( Base ` g ) = ( Base ` G ) ) |
| 10 | 9 1 | eqtr4di | |- ( ( g = G /\ s = S ) -> ( Base ` g ) = X ) |
| 11 | 10 | sseq2d | |- ( ( g = G /\ s = S ) -> ( { x , y } C_ ( Base ` g ) <-> { x , y } C_ X ) ) |
| 12 | 8 | fveq2d | |- ( ( g = G /\ s = S ) -> ( +g ` g ) = ( +g ` G ) ) |
| 13 | 12 3 | eqtr4di | |- ( ( g = G /\ s = S ) -> ( +g ` g ) = .+ ) |
| 14 | 8 | fveq2d | |- ( ( g = G /\ s = S ) -> ( invg ` g ) = ( invg ` G ) ) |
| 15 | 14 2 | eqtr4di | |- ( ( g = G /\ s = S ) -> ( invg ` g ) = N ) |
| 16 | 15 | fveq1d | |- ( ( g = G /\ s = S ) -> ( ( invg ` g ) ` x ) = ( N ` x ) ) |
| 17 | eqidd | |- ( ( g = G /\ s = S ) -> y = y ) |
|
| 18 | 13 16 17 | oveq123d | |- ( ( g = G /\ s = S ) -> ( ( ( invg ` g ) ` x ) ( +g ` g ) y ) = ( ( N ` x ) .+ y ) ) |
| 19 | simpr | |- ( ( g = G /\ s = S ) -> s = S ) |
|
| 20 | 18 19 | eleq12d | |- ( ( g = G /\ s = S ) -> ( ( ( ( invg ` g ) ` x ) ( +g ` g ) y ) e. s <-> ( ( N ` x ) .+ y ) e. S ) ) |
| 21 | 11 20 | anbi12d | |- ( ( g = G /\ s = S ) -> ( ( { x , y } C_ ( Base ` g ) /\ ( ( ( invg ` g ) ` x ) ( +g ` g ) y ) e. s ) <-> ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) ) ) |
| 22 | 21 | opabbidv | |- ( ( g = G /\ s = S ) -> { <. x , y >. | ( { x , y } C_ ( Base ` g ) /\ ( ( ( invg ` g ) ` x ) ( +g ` g ) y ) e. s ) } = { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } ) |
| 23 | df-eqg | |- ~QG = ( g e. _V , s e. _V |-> { <. x , y >. | ( { x , y } C_ ( Base ` g ) /\ ( ( ( invg ` g ) ` x ) ( +g ` g ) y ) e. s ) } ) |
|
| 24 | 6 6 | xpex | |- ( X X. X ) e. _V |
| 25 | simpl | |- ( ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) -> { x , y } C_ X ) |
|
| 26 | vex | |- x e. _V |
|
| 27 | vex | |- y e. _V |
|
| 28 | 26 27 | prss | |- ( ( x e. X /\ y e. X ) <-> { x , y } C_ X ) |
| 29 | 25 28 | sylibr | |- ( ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) -> ( x e. X /\ y e. X ) ) |
| 30 | 29 | ssopab2i | |- { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } C_ { <. x , y >. | ( x e. X /\ y e. X ) } |
| 31 | df-xp | |- ( X X. X ) = { <. x , y >. | ( x e. X /\ y e. X ) } |
|
| 32 | 30 31 | sseqtrri | |- { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } C_ ( X X. X ) |
| 33 | 24 32 | ssexi | |- { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } e. _V |
| 34 | 22 23 33 | ovmpoa | |- ( ( G e. _V /\ S e. _V ) -> ( G ~QG S ) = { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } ) |
| 35 | 4 34 | eqtrid | |- ( ( G e. _V /\ S e. _V ) -> R = { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } ) |
| 36 | 5 7 35 | syl2an | |- ( ( G e. V /\ S C_ X ) -> R = { <. x , y >. | ( { x , y } C_ X /\ ( ( N ` x ) .+ y ) e. S ) } ) |