This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence classes modulo the coset equivalence relation for the trivial (zero) subgroup of a group are singletons. (Contributed by AV, 26-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqg0subg.0 | |- .0. = ( 0g ` G ) |
|
| eqg0subg.s | |- S = { .0. } |
||
| eqg0subg.b | |- B = ( Base ` G ) |
||
| eqg0subg.r | |- R = ( G ~QG S ) |
||
| Assertion | eqg0subgecsn | |- ( ( G e. Grp /\ X e. B ) -> [ X ] R = { X } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqg0subg.0 | |- .0. = ( 0g ` G ) |
|
| 2 | eqg0subg.s | |- S = { .0. } |
|
| 3 | eqg0subg.b | |- B = ( Base ` G ) |
|
| 4 | eqg0subg.r | |- R = ( G ~QG S ) |
|
| 5 | df-ec | |- [ X ] R = ( R " { X } ) |
|
| 6 | 1 2 3 4 | eqg0subg | |- ( G e. Grp -> R = ( _I |` B ) ) |
| 7 | 6 | adantr | |- ( ( G e. Grp /\ X e. B ) -> R = ( _I |` B ) ) |
| 8 | 7 | imaeq1d | |- ( ( G e. Grp /\ X e. B ) -> ( R " { X } ) = ( ( _I |` B ) " { X } ) ) |
| 9 | snssi | |- ( X e. B -> { X } C_ B ) |
|
| 10 | 9 | adantl | |- ( ( G e. Grp /\ X e. B ) -> { X } C_ B ) |
| 11 | resima2 | |- ( { X } C_ B -> ( ( _I |` B ) " { X } ) = ( _I " { X } ) ) |
|
| 12 | 10 11 | syl | |- ( ( G e. Grp /\ X e. B ) -> ( ( _I |` B ) " { X } ) = ( _I " { X } ) ) |
| 13 | imai | |- ( _I " { X } ) = { X } |
|
| 14 | 12 13 | eqtrdi | |- ( ( G e. Grp /\ X e. B ) -> ( ( _I |` B ) " { X } ) = { X } ) |
| 15 | 8 14 | eqtrd | |- ( ( G e. Grp /\ X e. B ) -> ( R " { X } ) = { X } ) |
| 16 | 5 15 | eqtrid | |- ( ( G e. Grp /\ X e. B ) -> [ X ] R = { X } ) |