This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the base set of a quotient group. (Contributed by AV, 1-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | quselbas.e | |- .~ = ( G ~QG S ) |
|
| quselbas.u | |- U = ( G /s .~ ) |
||
| quselbas.b | |- B = ( Base ` G ) |
||
| Assertion | quselbas | |- ( ( G e. V /\ X e. W ) -> ( X e. ( Base ` U ) <-> E. x e. B X = [ x ] .~ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quselbas.e | |- .~ = ( G ~QG S ) |
|
| 2 | quselbas.u | |- U = ( G /s .~ ) |
|
| 3 | quselbas.b | |- B = ( Base ` G ) |
|
| 4 | 2 | a1i | |- ( ( G e. V /\ X e. W ) -> U = ( G /s .~ ) ) |
| 5 | 3 | a1i | |- ( ( G e. V /\ X e. W ) -> B = ( Base ` G ) ) |
| 6 | 1 | ovexi | |- .~ e. _V |
| 7 | 6 | a1i | |- ( ( G e. V /\ X e. W ) -> .~ e. _V ) |
| 8 | simpl | |- ( ( G e. V /\ X e. W ) -> G e. V ) |
|
| 9 | 4 5 7 8 | qusbas | |- ( ( G e. V /\ X e. W ) -> ( B /. .~ ) = ( Base ` U ) ) |
| 10 | 9 | eqcomd | |- ( ( G e. V /\ X e. W ) -> ( Base ` U ) = ( B /. .~ ) ) |
| 11 | 10 | eleq2d | |- ( ( G e. V /\ X e. W ) -> ( X e. ( Base ` U ) <-> X e. ( B /. .~ ) ) ) |
| 12 | elqsg | |- ( X e. W -> ( X e. ( B /. .~ ) <-> E. x e. B X = [ x ] .~ ) ) |
|
| 13 | 12 | adantl | |- ( ( G e. V /\ X e. W ) -> ( X e. ( B /. .~ ) <-> E. x e. B X = [ x ] .~ ) ) |
| 14 | 11 13 | bitrd | |- ( ( G e. V /\ X e. W ) -> ( X e. ( Base ` U ) <-> E. x e. B X = [ x ] .~ ) ) |