This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: log 2 is less than 1 . This is just a weaker form of log2ub when no tight upper bound is required. (Contributed by Thierry Arnoux, 27-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | log2le1 | |- ( log ` 2 ) < 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | log2ub | |- ( log ` 2 ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) |
|
| 2 | 2nn0 | |- 2 e. NN0 |
|
| 3 | 3nn0 | |- 3 e. NN0 |
|
| 4 | 5nn0 | |- 5 e. NN0 |
|
| 5 | 6nn0 | |- 6 e. NN0 |
|
| 6 | 2lt3 | |- 2 < 3 |
|
| 7 | 5lt10 | |- 5 < ; 1 0 |
|
| 8 | 3lt10 | |- 3 < ; 1 0 |
|
| 9 | 2 3 4 5 3 4 6 7 8 | 3decltc | |- ; ; 2 5 3 < ; ; 3 6 5 |
| 10 | 2 4 | deccl | |- ; 2 5 e. NN0 |
| 11 | 10 3 | deccl | |- ; ; 2 5 3 e. NN0 |
| 12 | 11 | nn0rei | |- ; ; 2 5 3 e. RR |
| 13 | 3 5 | deccl | |- ; 3 6 e. NN0 |
| 14 | 13 4 | deccl | |- ; ; 3 6 5 e. NN0 |
| 15 | 14 | nn0rei | |- ; ; 3 6 5 e. RR |
| 16 | 6nn | |- 6 e. NN |
|
| 17 | 3 16 | decnncl | |- ; 3 6 e. NN |
| 18 | 0nn0 | |- 0 e. NN0 |
|
| 19 | 10pos | |- 0 < ; 1 0 |
|
| 20 | 17 4 18 19 | declti | |- 0 < ; ; 3 6 5 |
| 21 | 12 15 15 20 | ltdiv1ii | |- ( ; ; 2 5 3 < ; ; 3 6 5 <-> ( ; ; 2 5 3 / ; ; 3 6 5 ) < ( ; ; 3 6 5 / ; ; 3 6 5 ) ) |
| 22 | 9 21 | mpbi | |- ( ; ; 2 5 3 / ; ; 3 6 5 ) < ( ; ; 3 6 5 / ; ; 3 6 5 ) |
| 23 | 15 | recni | |- ; ; 3 6 5 e. CC |
| 24 | 0re | |- 0 e. RR |
|
| 25 | 24 20 | gtneii | |- ; ; 3 6 5 =/= 0 |
| 26 | 23 25 | dividi | |- ( ; ; 3 6 5 / ; ; 3 6 5 ) = 1 |
| 27 | 22 26 | breqtri | |- ( ; ; 2 5 3 / ; ; 3 6 5 ) < 1 |
| 28 | 2rp | |- 2 e. RR+ |
|
| 29 | relogcl | |- ( 2 e. RR+ -> ( log ` 2 ) e. RR ) |
|
| 30 | 28 29 | ax-mp | |- ( log ` 2 ) e. RR |
| 31 | 12 15 25 | redivcli | |- ( ; ; 2 5 3 / ; ; 3 6 5 ) e. RR |
| 32 | 1re | |- 1 e. RR |
|
| 33 | 30 31 32 | lttri | |- ( ( ( log ` 2 ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) /\ ( ; ; 2 5 3 / ; ; 3 6 5 ) < 1 ) -> ( log ` 2 ) < 1 ) |
| 34 | 1 27 33 | mp2an | |- ( log ` 2 ) < 1 |