This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projective subspace sum operation value for nonempty sets. (Contributed by NM, 27-Jan-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | |- .<_ = ( le ` K ) |
|
| paddfval.j | |- .\/ = ( join ` K ) |
||
| paddfval.a | |- A = ( Atoms ` K ) |
||
| paddfval.p | |- .+ = ( +P ` K ) |
||
| Assertion | paddvaln0N | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( X .+ Y ) = { p e. A | E. q e. X E. r e. Y p .<_ ( q .\/ r ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | |- .<_ = ( le ` K ) |
|
| 2 | paddfval.j | |- .\/ = ( join ` K ) |
|
| 3 | paddfval.a | |- A = ( Atoms ` K ) |
|
| 4 | paddfval.p | |- .+ = ( +P ` K ) |
|
| 5 | 1 2 3 4 | elpaddn0 | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( s e. ( X .+ Y ) <-> ( s e. A /\ E. q e. X E. r e. Y s .<_ ( q .\/ r ) ) ) ) |
| 6 | breq1 | |- ( p = s -> ( p .<_ ( q .\/ r ) <-> s .<_ ( q .\/ r ) ) ) |
|
| 7 | 6 | 2rexbidv | |- ( p = s -> ( E. q e. X E. r e. Y p .<_ ( q .\/ r ) <-> E. q e. X E. r e. Y s .<_ ( q .\/ r ) ) ) |
| 8 | 7 | elrab | |- ( s e. { p e. A | E. q e. X E. r e. Y p .<_ ( q .\/ r ) } <-> ( s e. A /\ E. q e. X E. r e. Y s .<_ ( q .\/ r ) ) ) |
| 9 | 5 8 | bitr4di | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( s e. ( X .+ Y ) <-> s e. { p e. A | E. q e. X E. r e. Y p .<_ ( q .\/ r ) } ) ) |
| 10 | 9 | eqrdv | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( X .+ Y ) = { p e. A | E. q e. X E. r e. Y p .<_ ( q .\/ r ) } ) |