This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement operation. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvfval.v | |- V = ( Base ` W ) |
|
| ocvfval.i | |- ., = ( .i ` W ) |
||
| ocvfval.f | |- F = ( Scalar ` W ) |
||
| ocvfval.z | |- .0. = ( 0g ` F ) |
||
| ocvfval.o | |- ._|_ = ( ocv ` W ) |
||
| Assertion | ocvfval | |- ( W e. X -> ._|_ = ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvfval.v | |- V = ( Base ` W ) |
|
| 2 | ocvfval.i | |- ., = ( .i ` W ) |
|
| 3 | ocvfval.f | |- F = ( Scalar ` W ) |
|
| 4 | ocvfval.z | |- .0. = ( 0g ` F ) |
|
| 5 | ocvfval.o | |- ._|_ = ( ocv ` W ) |
|
| 6 | elex | |- ( W e. X -> W e. _V ) |
|
| 7 | fveq2 | |- ( h = W -> ( Base ` h ) = ( Base ` W ) ) |
|
| 8 | 7 1 | eqtr4di | |- ( h = W -> ( Base ` h ) = V ) |
| 9 | 8 | pweqd | |- ( h = W -> ~P ( Base ` h ) = ~P V ) |
| 10 | fveq2 | |- ( h = W -> ( .i ` h ) = ( .i ` W ) ) |
|
| 11 | 10 2 | eqtr4di | |- ( h = W -> ( .i ` h ) = ., ) |
| 12 | 11 | oveqd | |- ( h = W -> ( x ( .i ` h ) y ) = ( x ., y ) ) |
| 13 | fveq2 | |- ( h = W -> ( Scalar ` h ) = ( Scalar ` W ) ) |
|
| 14 | 13 3 | eqtr4di | |- ( h = W -> ( Scalar ` h ) = F ) |
| 15 | 14 | fveq2d | |- ( h = W -> ( 0g ` ( Scalar ` h ) ) = ( 0g ` F ) ) |
| 16 | 15 4 | eqtr4di | |- ( h = W -> ( 0g ` ( Scalar ` h ) ) = .0. ) |
| 17 | 12 16 | eqeq12d | |- ( h = W -> ( ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) <-> ( x ., y ) = .0. ) ) |
| 18 | 17 | ralbidv | |- ( h = W -> ( A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) <-> A. y e. s ( x ., y ) = .0. ) ) |
| 19 | 8 18 | rabeqbidv | |- ( h = W -> { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } = { x e. V | A. y e. s ( x ., y ) = .0. } ) |
| 20 | 9 19 | mpteq12dv | |- ( h = W -> ( s e. ~P ( Base ` h ) |-> { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } ) = ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) ) |
| 21 | df-ocv | |- ocv = ( h e. _V |-> ( s e. ~P ( Base ` h ) |-> { x e. ( Base ` h ) | A. y e. s ( x ( .i ` h ) y ) = ( 0g ` ( Scalar ` h ) ) } ) ) |
|
| 22 | eqid | |- ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) = ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) |
|
| 23 | 1 | fvexi | |- V e. _V |
| 24 | ssrab2 | |- { x e. V | A. y e. s ( x ., y ) = .0. } C_ V |
|
| 25 | 23 24 | elpwi2 | |- { x e. V | A. y e. s ( x ., y ) = .0. } e. ~P V |
| 26 | 25 | a1i | |- ( s e. ~P V -> { x e. V | A. y e. s ( x ., y ) = .0. } e. ~P V ) |
| 27 | 22 26 | fmpti | |- ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) : ~P V --> ~P V |
| 28 | 23 | pwex | |- ~P V e. _V |
| 29 | fex2 | |- ( ( ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) : ~P V --> ~P V /\ ~P V e. _V /\ ~P V e. _V ) -> ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) e. _V ) |
|
| 30 | 27 28 28 29 | mp3an | |- ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) e. _V |
| 31 | 20 21 30 | fvmpt | |- ( W e. _V -> ( ocv ` W ) = ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) ) |
| 32 | 6 31 | syl | |- ( W e. X -> ( ocv ` W ) = ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) ) |
| 33 | 5 32 | eqtrid | |- ( W e. X -> ._|_ = ( s e. ~P V |-> { x e. V | A. y e. s ( x ., y ) = .0. } ) ) |