This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ocvfval.v | |- V = ( Base ` W ) |
|
| ocvfval.i | |- ., = ( .i ` W ) |
||
| ocvfval.f | |- F = ( Scalar ` W ) |
||
| ocvfval.z | |- .0. = ( 0g ` F ) |
||
| ocvfval.o | |- ._|_ = ( ocv ` W ) |
||
| Assertion | ocvi | |- ( ( A e. ( ._|_ ` S ) /\ B e. S ) -> ( A ., B ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocvfval.v | |- V = ( Base ` W ) |
|
| 2 | ocvfval.i | |- ., = ( .i ` W ) |
|
| 3 | ocvfval.f | |- F = ( Scalar ` W ) |
|
| 4 | ocvfval.z | |- .0. = ( 0g ` F ) |
|
| 5 | ocvfval.o | |- ._|_ = ( ocv ` W ) |
|
| 6 | 1 2 3 4 5 | elocv | |- ( A e. ( ._|_ ` S ) <-> ( S C_ V /\ A e. V /\ A. x e. S ( A ., x ) = .0. ) ) |
| 7 | 6 | simp3bi | |- ( A e. ( ._|_ ` S ) -> A. x e. S ( A ., x ) = .0. ) |
| 8 | oveq2 | |- ( x = B -> ( A ., x ) = ( A ., B ) ) |
|
| 9 | 8 | eqeq1d | |- ( x = B -> ( ( A ., x ) = .0. <-> ( A ., B ) = .0. ) ) |
| 10 | 9 | rspccva | |- ( ( A. x e. S ( A ., x ) = .0. /\ B e. S ) -> ( A ., B ) = .0. ) |
| 11 | 7 10 | sylan | |- ( ( A e. ( ._|_ ` S ) /\ B e. S ) -> ( A ., B ) = .0. ) |