This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A span membership condition implying two vectors belong to the same subspace. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elspansn4 | |- ( ( ( A e. SH /\ B e. ~H ) /\ ( C e. ( span ` { B } ) /\ C =/= 0h ) ) -> ( B e. A <-> C e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elspansn3 | |- ( ( A e. SH /\ B e. A /\ C e. ( span ` { B } ) ) -> C e. A ) |
|
| 2 | 1 | 3exp | |- ( A e. SH -> ( B e. A -> ( C e. ( span ` { B } ) -> C e. A ) ) ) |
| 3 | 2 | com23 | |- ( A e. SH -> ( C e. ( span ` { B } ) -> ( B e. A -> C e. A ) ) ) |
| 4 | 3 | imp | |- ( ( A e. SH /\ C e. ( span ` { B } ) ) -> ( B e. A -> C e. A ) ) |
| 5 | 4 | ad2ant2r | |- ( ( ( A e. SH /\ B e. ~H ) /\ ( C e. ( span ` { B } ) /\ C =/= 0h ) ) -> ( B e. A -> C e. A ) ) |
| 6 | spansnid | |- ( B e. ~H -> B e. ( span ` { B } ) ) |
|
| 7 | 6 | ad2antrr | |- ( ( ( B e. ~H /\ C =/= 0h ) /\ C e. ( span ` { B } ) ) -> B e. ( span ` { B } ) ) |
| 8 | spansneleq | |- ( ( B e. ~H /\ C =/= 0h ) -> ( C e. ( span ` { B } ) -> ( span ` { C } ) = ( span ` { B } ) ) ) |
|
| 9 | 8 | imp | |- ( ( ( B e. ~H /\ C =/= 0h ) /\ C e. ( span ` { B } ) ) -> ( span ` { C } ) = ( span ` { B } ) ) |
| 10 | 7 9 | eleqtrrd | |- ( ( ( B e. ~H /\ C =/= 0h ) /\ C e. ( span ` { B } ) ) -> B e. ( span ` { C } ) ) |
| 11 | elspansn3 | |- ( ( A e. SH /\ C e. A /\ B e. ( span ` { C } ) ) -> B e. A ) |
|
| 12 | 11 | 3expia | |- ( ( A e. SH /\ C e. A ) -> ( B e. ( span ` { C } ) -> B e. A ) ) |
| 13 | 10 12 | syl5 | |- ( ( A e. SH /\ C e. A ) -> ( ( ( B e. ~H /\ C =/= 0h ) /\ C e. ( span ` { B } ) ) -> B e. A ) ) |
| 14 | 13 | exp4b | |- ( A e. SH -> ( C e. A -> ( ( B e. ~H /\ C =/= 0h ) -> ( C e. ( span ` { B } ) -> B e. A ) ) ) ) |
| 15 | 14 | com24 | |- ( A e. SH -> ( C e. ( span ` { B } ) -> ( ( B e. ~H /\ C =/= 0h ) -> ( C e. A -> B e. A ) ) ) ) |
| 16 | 15 | exp4a | |- ( A e. SH -> ( C e. ( span ` { B } ) -> ( B e. ~H -> ( C =/= 0h -> ( C e. A -> B e. A ) ) ) ) ) |
| 17 | 16 | com23 | |- ( A e. SH -> ( B e. ~H -> ( C e. ( span ` { B } ) -> ( C =/= 0h -> ( C e. A -> B e. A ) ) ) ) ) |
| 18 | 17 | imp43 | |- ( ( ( A e. SH /\ B e. ~H ) /\ ( C e. ( span ` { B } ) /\ C =/= 0h ) ) -> ( C e. A -> B e. A ) ) |
| 19 | 5 18 | impbid | |- ( ( ( A e. SH /\ B e. ~H ) /\ ( C e. ( span ` { B } ) /\ C =/= 0h ) ) -> ( B e. A <-> C e. A ) ) |