This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elixpsn | |- ( A e. V -> ( F e. X_ x e. { A } B <-> E. y e. B F = { <. A , y >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | |- ( z = A -> { z } = { A } ) |
|
| 2 | 1 | ixpeq1d | |- ( z = A -> X_ x e. { z } B = X_ x e. { A } B ) |
| 3 | 2 | eleq2d | |- ( z = A -> ( F e. X_ x e. { z } B <-> F e. X_ x e. { A } B ) ) |
| 4 | opeq1 | |- ( z = A -> <. z , y >. = <. A , y >. ) |
|
| 5 | 4 | sneqd | |- ( z = A -> { <. z , y >. } = { <. A , y >. } ) |
| 6 | 5 | eqeq2d | |- ( z = A -> ( F = { <. z , y >. } <-> F = { <. A , y >. } ) ) |
| 7 | 6 | rexbidv | |- ( z = A -> ( E. y e. B F = { <. z , y >. } <-> E. y e. B F = { <. A , y >. } ) ) |
| 8 | elex | |- ( F e. X_ x e. { z } B -> F e. _V ) |
|
| 9 | snex | |- { <. z , y >. } e. _V |
|
| 10 | eleq1 | |- ( F = { <. z , y >. } -> ( F e. _V <-> { <. z , y >. } e. _V ) ) |
|
| 11 | 9 10 | mpbiri | |- ( F = { <. z , y >. } -> F e. _V ) |
| 12 | 11 | rexlimivw | |- ( E. y e. B F = { <. z , y >. } -> F e. _V ) |
| 13 | eleq1 | |- ( w = F -> ( w e. X_ x e. { z } B <-> F e. X_ x e. { z } B ) ) |
|
| 14 | eqeq1 | |- ( w = F -> ( w = { <. z , y >. } <-> F = { <. z , y >. } ) ) |
|
| 15 | 14 | rexbidv | |- ( w = F -> ( E. y e. B w = { <. z , y >. } <-> E. y e. B F = { <. z , y >. } ) ) |
| 16 | vex | |- w e. _V |
|
| 17 | 16 | elixp | |- ( w e. X_ x e. { z } B <-> ( w Fn { z } /\ A. x e. { z } ( w ` x ) e. B ) ) |
| 18 | vex | |- z e. _V |
|
| 19 | fveq2 | |- ( x = z -> ( w ` x ) = ( w ` z ) ) |
|
| 20 | 19 | eleq1d | |- ( x = z -> ( ( w ` x ) e. B <-> ( w ` z ) e. B ) ) |
| 21 | 18 20 | ralsn | |- ( A. x e. { z } ( w ` x ) e. B <-> ( w ` z ) e. B ) |
| 22 | 21 | anbi2i | |- ( ( w Fn { z } /\ A. x e. { z } ( w ` x ) e. B ) <-> ( w Fn { z } /\ ( w ` z ) e. B ) ) |
| 23 | simpl | |- ( ( w Fn { z } /\ ( w ` z ) e. B ) -> w Fn { z } ) |
|
| 24 | fveq2 | |- ( y = z -> ( w ` y ) = ( w ` z ) ) |
|
| 25 | 24 | eleq1d | |- ( y = z -> ( ( w ` y ) e. B <-> ( w ` z ) e. B ) ) |
| 26 | 18 25 | ralsn | |- ( A. y e. { z } ( w ` y ) e. B <-> ( w ` z ) e. B ) |
| 27 | 26 | biimpri | |- ( ( w ` z ) e. B -> A. y e. { z } ( w ` y ) e. B ) |
| 28 | 27 | adantl | |- ( ( w Fn { z } /\ ( w ` z ) e. B ) -> A. y e. { z } ( w ` y ) e. B ) |
| 29 | ffnfv | |- ( w : { z } --> B <-> ( w Fn { z } /\ A. y e. { z } ( w ` y ) e. B ) ) |
|
| 30 | 23 28 29 | sylanbrc | |- ( ( w Fn { z } /\ ( w ` z ) e. B ) -> w : { z } --> B ) |
| 31 | 18 | fsn2 | |- ( w : { z } --> B <-> ( ( w ` z ) e. B /\ w = { <. z , ( w ` z ) >. } ) ) |
| 32 | 30 31 | sylib | |- ( ( w Fn { z } /\ ( w ` z ) e. B ) -> ( ( w ` z ) e. B /\ w = { <. z , ( w ` z ) >. } ) ) |
| 33 | opeq2 | |- ( y = ( w ` z ) -> <. z , y >. = <. z , ( w ` z ) >. ) |
|
| 34 | 33 | sneqd | |- ( y = ( w ` z ) -> { <. z , y >. } = { <. z , ( w ` z ) >. } ) |
| 35 | 34 | rspceeqv | |- ( ( ( w ` z ) e. B /\ w = { <. z , ( w ` z ) >. } ) -> E. y e. B w = { <. z , y >. } ) |
| 36 | 32 35 | syl | |- ( ( w Fn { z } /\ ( w ` z ) e. B ) -> E. y e. B w = { <. z , y >. } ) |
| 37 | vex | |- y e. _V |
|
| 38 | 18 37 | fvsn | |- ( { <. z , y >. } ` z ) = y |
| 39 | id | |- ( y e. B -> y e. B ) |
|
| 40 | 38 39 | eqeltrid | |- ( y e. B -> ( { <. z , y >. } ` z ) e. B ) |
| 41 | 18 37 | fnsn | |- { <. z , y >. } Fn { z } |
| 42 | 40 41 | jctil | |- ( y e. B -> ( { <. z , y >. } Fn { z } /\ ( { <. z , y >. } ` z ) e. B ) ) |
| 43 | fneq1 | |- ( w = { <. z , y >. } -> ( w Fn { z } <-> { <. z , y >. } Fn { z } ) ) |
|
| 44 | fveq1 | |- ( w = { <. z , y >. } -> ( w ` z ) = ( { <. z , y >. } ` z ) ) |
|
| 45 | 44 | eleq1d | |- ( w = { <. z , y >. } -> ( ( w ` z ) e. B <-> ( { <. z , y >. } ` z ) e. B ) ) |
| 46 | 43 45 | anbi12d | |- ( w = { <. z , y >. } -> ( ( w Fn { z } /\ ( w ` z ) e. B ) <-> ( { <. z , y >. } Fn { z } /\ ( { <. z , y >. } ` z ) e. B ) ) ) |
| 47 | 42 46 | syl5ibrcom | |- ( y e. B -> ( w = { <. z , y >. } -> ( w Fn { z } /\ ( w ` z ) e. B ) ) ) |
| 48 | 47 | rexlimiv | |- ( E. y e. B w = { <. z , y >. } -> ( w Fn { z } /\ ( w ` z ) e. B ) ) |
| 49 | 36 48 | impbii | |- ( ( w Fn { z } /\ ( w ` z ) e. B ) <-> E. y e. B w = { <. z , y >. } ) |
| 50 | 17 22 49 | 3bitri | |- ( w e. X_ x e. { z } B <-> E. y e. B w = { <. z , y >. } ) |
| 51 | 13 15 50 | vtoclbg | |- ( F e. _V -> ( F e. X_ x e. { z } B <-> E. y e. B F = { <. z , y >. } ) ) |
| 52 | 8 12 51 | pm5.21nii | |- ( F e. X_ x e. { z } B <-> E. y e. B F = { <. z , y >. } ) |
| 53 | 3 7 52 | vtoclbg | |- ( A e. V -> ( F e. X_ x e. { A } B <-> E. y e. B F = { <. A , y >. } ) ) |