This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ixpsnf1o.f | |- F = ( x e. A |-> ( { I } X. { x } ) ) |
|
| Assertion | ixpsnf1o | |- ( I e. V -> F : A -1-1-onto-> X_ y e. { I } A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpsnf1o.f | |- F = ( x e. A |-> ( { I } X. { x } ) ) |
|
| 2 | snex | |- { I } e. _V |
|
| 3 | snex | |- { x } e. _V |
|
| 4 | 2 3 | xpex | |- ( { I } X. { x } ) e. _V |
| 5 | 4 | a1i | |- ( ( I e. V /\ x e. A ) -> ( { I } X. { x } ) e. _V ) |
| 6 | vex | |- a e. _V |
|
| 7 | 6 | rnex | |- ran a e. _V |
| 8 | 7 | uniex | |- U. ran a e. _V |
| 9 | 8 | a1i | |- ( ( I e. V /\ a e. X_ y e. { I } A ) -> U. ran a e. _V ) |
| 10 | sneq | |- ( b = I -> { b } = { I } ) |
|
| 11 | 10 | xpeq1d | |- ( b = I -> ( { b } X. { x } ) = ( { I } X. { x } ) ) |
| 12 | 11 | eqeq2d | |- ( b = I -> ( a = ( { b } X. { x } ) <-> a = ( { I } X. { x } ) ) ) |
| 13 | 12 | anbi2d | |- ( b = I -> ( ( x e. A /\ a = ( { b } X. { x } ) ) <-> ( x e. A /\ a = ( { I } X. { x } ) ) ) ) |
| 14 | elixpsn | |- ( b e. _V -> ( a e. X_ y e. { b } A <-> E. c e. A a = { <. b , c >. } ) ) |
|
| 15 | 14 | elv | |- ( a e. X_ y e. { b } A <-> E. c e. A a = { <. b , c >. } ) |
| 16 | 10 | ixpeq1d | |- ( b = I -> X_ y e. { b } A = X_ y e. { I } A ) |
| 17 | 16 | eleq2d | |- ( b = I -> ( a e. X_ y e. { b } A <-> a e. X_ y e. { I } A ) ) |
| 18 | 15 17 | bitr3id | |- ( b = I -> ( E. c e. A a = { <. b , c >. } <-> a e. X_ y e. { I } A ) ) |
| 19 | 18 | anbi1d | |- ( b = I -> ( ( E. c e. A a = { <. b , c >. } /\ x = U. ran a ) <-> ( a e. X_ y e. { I } A /\ x = U. ran a ) ) ) |
| 20 | vex | |- b e. _V |
|
| 21 | vex | |- x e. _V |
|
| 22 | 20 21 | xpsn | |- ( { b } X. { x } ) = { <. b , x >. } |
| 23 | 22 | eqeq2i | |- ( a = ( { b } X. { x } ) <-> a = { <. b , x >. } ) |
| 24 | 23 | anbi2i | |- ( ( x e. A /\ a = ( { b } X. { x } ) ) <-> ( x e. A /\ a = { <. b , x >. } ) ) |
| 25 | eqid | |- { <. b , x >. } = { <. b , x >. } |
|
| 26 | opeq2 | |- ( c = x -> <. b , c >. = <. b , x >. ) |
|
| 27 | 26 | sneqd | |- ( c = x -> { <. b , c >. } = { <. b , x >. } ) |
| 28 | 27 | rspceeqv | |- ( ( x e. A /\ { <. b , x >. } = { <. b , x >. } ) -> E. c e. A { <. b , x >. } = { <. b , c >. } ) |
| 29 | 25 28 | mpan2 | |- ( x e. A -> E. c e. A { <. b , x >. } = { <. b , c >. } ) |
| 30 | 20 21 | op2nda | |- U. ran { <. b , x >. } = x |
| 31 | 30 | eqcomi | |- x = U. ran { <. b , x >. } |
| 32 | 29 31 | jctir | |- ( x e. A -> ( E. c e. A { <. b , x >. } = { <. b , c >. } /\ x = U. ran { <. b , x >. } ) ) |
| 33 | eqeq1 | |- ( a = { <. b , x >. } -> ( a = { <. b , c >. } <-> { <. b , x >. } = { <. b , c >. } ) ) |
|
| 34 | 33 | rexbidv | |- ( a = { <. b , x >. } -> ( E. c e. A a = { <. b , c >. } <-> E. c e. A { <. b , x >. } = { <. b , c >. } ) ) |
| 35 | rneq | |- ( a = { <. b , x >. } -> ran a = ran { <. b , x >. } ) |
|
| 36 | 35 | unieqd | |- ( a = { <. b , x >. } -> U. ran a = U. ran { <. b , x >. } ) |
| 37 | 36 | eqeq2d | |- ( a = { <. b , x >. } -> ( x = U. ran a <-> x = U. ran { <. b , x >. } ) ) |
| 38 | 34 37 | anbi12d | |- ( a = { <. b , x >. } -> ( ( E. c e. A a = { <. b , c >. } /\ x = U. ran a ) <-> ( E. c e. A { <. b , x >. } = { <. b , c >. } /\ x = U. ran { <. b , x >. } ) ) ) |
| 39 | 32 38 | syl5ibrcom | |- ( x e. A -> ( a = { <. b , x >. } -> ( E. c e. A a = { <. b , c >. } /\ x = U. ran a ) ) ) |
| 40 | 39 | imp | |- ( ( x e. A /\ a = { <. b , x >. } ) -> ( E. c e. A a = { <. b , c >. } /\ x = U. ran a ) ) |
| 41 | vex | |- c e. _V |
|
| 42 | 20 41 | op2nda | |- U. ran { <. b , c >. } = c |
| 43 | 42 | eqeq2i | |- ( x = U. ran { <. b , c >. } <-> x = c ) |
| 44 | eqidd | |- ( c e. A -> { <. b , c >. } = { <. b , c >. } ) |
|
| 45 | 44 | ancli | |- ( c e. A -> ( c e. A /\ { <. b , c >. } = { <. b , c >. } ) ) |
| 46 | eleq1w | |- ( x = c -> ( x e. A <-> c e. A ) ) |
|
| 47 | opeq2 | |- ( x = c -> <. b , x >. = <. b , c >. ) |
|
| 48 | 47 | sneqd | |- ( x = c -> { <. b , x >. } = { <. b , c >. } ) |
| 49 | 48 | eqeq2d | |- ( x = c -> ( { <. b , c >. } = { <. b , x >. } <-> { <. b , c >. } = { <. b , c >. } ) ) |
| 50 | 46 49 | anbi12d | |- ( x = c -> ( ( x e. A /\ { <. b , c >. } = { <. b , x >. } ) <-> ( c e. A /\ { <. b , c >. } = { <. b , c >. } ) ) ) |
| 51 | 45 50 | syl5ibrcom | |- ( c e. A -> ( x = c -> ( x e. A /\ { <. b , c >. } = { <. b , x >. } ) ) ) |
| 52 | 43 51 | biimtrid | |- ( c e. A -> ( x = U. ran { <. b , c >. } -> ( x e. A /\ { <. b , c >. } = { <. b , x >. } ) ) ) |
| 53 | rneq | |- ( a = { <. b , c >. } -> ran a = ran { <. b , c >. } ) |
|
| 54 | 53 | unieqd | |- ( a = { <. b , c >. } -> U. ran a = U. ran { <. b , c >. } ) |
| 55 | 54 | eqeq2d | |- ( a = { <. b , c >. } -> ( x = U. ran a <-> x = U. ran { <. b , c >. } ) ) |
| 56 | eqeq1 | |- ( a = { <. b , c >. } -> ( a = { <. b , x >. } <-> { <. b , c >. } = { <. b , x >. } ) ) |
|
| 57 | 56 | anbi2d | |- ( a = { <. b , c >. } -> ( ( x e. A /\ a = { <. b , x >. } ) <-> ( x e. A /\ { <. b , c >. } = { <. b , x >. } ) ) ) |
| 58 | 55 57 | imbi12d | |- ( a = { <. b , c >. } -> ( ( x = U. ran a -> ( x e. A /\ a = { <. b , x >. } ) ) <-> ( x = U. ran { <. b , c >. } -> ( x e. A /\ { <. b , c >. } = { <. b , x >. } ) ) ) ) |
| 59 | 52 58 | syl5ibrcom | |- ( c e. A -> ( a = { <. b , c >. } -> ( x = U. ran a -> ( x e. A /\ a = { <. b , x >. } ) ) ) ) |
| 60 | 59 | rexlimiv | |- ( E. c e. A a = { <. b , c >. } -> ( x = U. ran a -> ( x e. A /\ a = { <. b , x >. } ) ) ) |
| 61 | 60 | imp | |- ( ( E. c e. A a = { <. b , c >. } /\ x = U. ran a ) -> ( x e. A /\ a = { <. b , x >. } ) ) |
| 62 | 40 61 | impbii | |- ( ( x e. A /\ a = { <. b , x >. } ) <-> ( E. c e. A a = { <. b , c >. } /\ x = U. ran a ) ) |
| 63 | 24 62 | bitri | |- ( ( x e. A /\ a = ( { b } X. { x } ) ) <-> ( E. c e. A a = { <. b , c >. } /\ x = U. ran a ) ) |
| 64 | 13 19 63 | vtoclbg | |- ( I e. V -> ( ( x e. A /\ a = ( { I } X. { x } ) ) <-> ( a e. X_ y e. { I } A /\ x = U. ran a ) ) ) |
| 65 | 1 5 9 64 | f1od | |- ( I e. V -> F : A -1-1-onto-> X_ y e. { I } A ) |