This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fsn2.1 | |- A e. _V |
|
| Assertion | fsn2 | |- ( F : { A } --> B <-> ( ( F ` A ) e. B /\ F = { <. A , ( F ` A ) >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsn2.1 | |- A e. _V |
|
| 2 | 1 | snid | |- A e. { A } |
| 3 | ffvelcdm | |- ( ( F : { A } --> B /\ A e. { A } ) -> ( F ` A ) e. B ) |
|
| 4 | 2 3 | mpan2 | |- ( F : { A } --> B -> ( F ` A ) e. B ) |
| 5 | ffn | |- ( F : { A } --> B -> F Fn { A } ) |
|
| 6 | dffn3 | |- ( F Fn { A } <-> F : { A } --> ran F ) |
|
| 7 | 6 | biimpi | |- ( F Fn { A } -> F : { A } --> ran F ) |
| 8 | imadmrn | |- ( F " dom F ) = ran F |
|
| 9 | fndm | |- ( F Fn { A } -> dom F = { A } ) |
|
| 10 | 9 | imaeq2d | |- ( F Fn { A } -> ( F " dom F ) = ( F " { A } ) ) |
| 11 | 8 10 | eqtr3id | |- ( F Fn { A } -> ran F = ( F " { A } ) ) |
| 12 | fnsnfv | |- ( ( F Fn { A } /\ A e. { A } ) -> { ( F ` A ) } = ( F " { A } ) ) |
|
| 13 | 2 12 | mpan2 | |- ( F Fn { A } -> { ( F ` A ) } = ( F " { A } ) ) |
| 14 | 11 13 | eqtr4d | |- ( F Fn { A } -> ran F = { ( F ` A ) } ) |
| 15 | 14 | feq3d | |- ( F Fn { A } -> ( F : { A } --> ran F <-> F : { A } --> { ( F ` A ) } ) ) |
| 16 | 7 15 | mpbid | |- ( F Fn { A } -> F : { A } --> { ( F ` A ) } ) |
| 17 | 5 16 | syl | |- ( F : { A } --> B -> F : { A } --> { ( F ` A ) } ) |
| 18 | 4 17 | jca | |- ( F : { A } --> B -> ( ( F ` A ) e. B /\ F : { A } --> { ( F ` A ) } ) ) |
| 19 | snssi | |- ( ( F ` A ) e. B -> { ( F ` A ) } C_ B ) |
|
| 20 | fss | |- ( ( F : { A } --> { ( F ` A ) } /\ { ( F ` A ) } C_ B ) -> F : { A } --> B ) |
|
| 21 | 20 | ancoms | |- ( ( { ( F ` A ) } C_ B /\ F : { A } --> { ( F ` A ) } ) -> F : { A } --> B ) |
| 22 | 19 21 | sylan | |- ( ( ( F ` A ) e. B /\ F : { A } --> { ( F ` A ) } ) -> F : { A } --> B ) |
| 23 | 18 22 | impbii | |- ( F : { A } --> B <-> ( ( F ` A ) e. B /\ F : { A } --> { ( F ` A ) } ) ) |
| 24 | fvex | |- ( F ` A ) e. _V |
|
| 25 | 1 24 | fsn | |- ( F : { A } --> { ( F ` A ) } <-> F = { <. A , ( F ` A ) >. } ) |
| 26 | 25 | anbi2i | |- ( ( ( F ` A ) e. B /\ F : { A } --> { ( F ` A ) } ) <-> ( ( F ` A ) e. B /\ F = { <. A , ( F ` A ) >. } ) ) |
| 27 | 23 26 | bitri | |- ( F : { A } --> B <-> ( ( F ` A ) e. B /\ F = { <. A , ( F ` A ) >. } ) ) |