This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elfvmptrab.f | |- F = ( x e. V |-> { y e. M | ph } ) |
|
| elfvmptrab.v | |- ( X e. V -> M e. _V ) |
||
| Assertion | elfvmptrab | |- ( Y e. ( F ` X ) -> ( X e. V /\ Y e. M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvmptrab.f | |- F = ( x e. V |-> { y e. M | ph } ) |
|
| 2 | elfvmptrab.v | |- ( X e. V -> M e. _V ) |
|
| 3 | csbconstg | |- ( x e. V -> [_ x / m ]_ M = M ) |
|
| 4 | 3 | eqcomd | |- ( x e. V -> M = [_ x / m ]_ M ) |
| 5 | rabeq | |- ( M = [_ x / m ]_ M -> { y e. M | ph } = { y e. [_ x / m ]_ M | ph } ) |
|
| 6 | 4 5 | syl | |- ( x e. V -> { y e. M | ph } = { y e. [_ x / m ]_ M | ph } ) |
| 7 | 6 | mpteq2ia | |- ( x e. V |-> { y e. M | ph } ) = ( x e. V |-> { y e. [_ x / m ]_ M | ph } ) |
| 8 | 1 7 | eqtri | |- F = ( x e. V |-> { y e. [_ x / m ]_ M | ph } ) |
| 9 | csbconstg | |- ( X e. V -> [_ X / m ]_ M = M ) |
|
| 10 | 9 2 | eqeltrd | |- ( X e. V -> [_ X / m ]_ M e. _V ) |
| 11 | 8 10 | elfvmptrab1w | |- ( Y e. ( F ` X ) -> ( X e. V /\ Y e. [_ X / m ]_ M ) ) |
| 12 | 9 | eleq2d | |- ( X e. V -> ( Y e. [_ X / m ]_ M <-> Y e. M ) ) |
| 13 | 12 | biimpd | |- ( X e. V -> ( Y e. [_ X / m ]_ M -> Y e. M ) ) |
| 14 | 13 | imdistani | |- ( ( X e. V /\ Y e. [_ X / m ]_ M ) -> ( X e. V /\ Y e. M ) ) |
| 15 | 11 14 | syl | |- ( Y e. ( F ` X ) -> ( X e. V /\ Y e. M ) ) |