This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variable not free in a wff remains so in a restricted class abstraction. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfrabw when possible. (Contributed by NM, 13-Oct-2003) (Revised by Mario Carneiro, 9-Oct-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfrab.1 | |- F/ x ph |
|
| nfrab.2 | |- F/_ x A |
||
| Assertion | nfrab | |- F/_ x { y e. A | ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrab.1 | |- F/ x ph |
|
| 2 | nfrab.2 | |- F/_ x A |
|
| 3 | df-rab | |- { y e. A | ph } = { y | ( y e. A /\ ph ) } |
|
| 4 | nftru | |- F/ y T. |
|
| 5 | 2 | nfcri | |- F/ x z e. A |
| 6 | eleq1w | |- ( z = y -> ( z e. A <-> y e. A ) ) |
|
| 7 | 5 6 | dvelimnf | |- ( -. A. x x = y -> F/ x y e. A ) |
| 8 | 1 | a1i | |- ( -. A. x x = y -> F/ x ph ) |
| 9 | 7 8 | nfand | |- ( -. A. x x = y -> F/ x ( y e. A /\ ph ) ) |
| 10 | 9 | adantl | |- ( ( T. /\ -. A. x x = y ) -> F/ x ( y e. A /\ ph ) ) |
| 11 | 4 10 | nfabd2 | |- ( T. -> F/_ x { y | ( y e. A /\ ph ) } ) |
| 12 | 11 | mptru | |- F/_ x { y | ( y e. A /\ ph ) } |
| 13 | 3 12 | nfcxfr | |- F/_ x { y e. A | ph } |