This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of disjlem19 (together with membpartlem19 , this is former prtlem19 ). (Contributed by Peter Mazsa, 21-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldisjlem19 | ⊢ ( 𝐵 ∈ 𝑉 → ( ElDisj 𝐴 → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eldisj | ⊢ ( ElDisj 𝐴 ↔ Disj ( ◡ E ↾ 𝐴 ) ) | |
| 2 | disjlem19 | ⊢ ( 𝐵 ∈ 𝑉 → ( Disj ( ◡ E ↾ 𝐴 ) → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ [ 𝑢 ] ( ◡ E ↾ 𝐴 ) ) → [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) ) | |
| 3 | 1 2 | biimtrid | ⊢ ( 𝐵 ∈ 𝑉 → ( ElDisj 𝐴 → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ [ 𝑢 ] ( ◡ E ↾ 𝐴 ) ) → [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) ) |
| 4 | 3 | imp | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ElDisj 𝐴 ) → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ [ 𝑢 ] ( ◡ E ↾ 𝐴 ) ) → [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) |
| 5 | 4 | expdimp | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ElDisj 𝐴 ) ∧ 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ) → ( 𝐵 ∈ [ 𝑢 ] ( ◡ E ↾ 𝐴 ) → [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) |
| 6 | eccnvepres3 | ⊢ ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) → [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = 𝑢 ) | |
| 7 | 6 | eleq2d | ⊢ ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) → ( 𝐵 ∈ [ 𝑢 ] ( ◡ E ↾ 𝐴 ) ↔ 𝐵 ∈ 𝑢 ) ) |
| 8 | 6 | eqeq1d | ⊢ ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) → ( [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ↔ 𝑢 = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) |
| 9 | 7 8 | imbi12d | ⊢ ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) → ( ( 𝐵 ∈ [ 𝑢 ] ( ◡ E ↾ 𝐴 ) → [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ↔ ( 𝐵 ∈ 𝑢 → 𝑢 = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ElDisj 𝐴 ) ∧ 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ) → ( ( 𝐵 ∈ [ 𝑢 ] ( ◡ E ↾ 𝐴 ) → [ 𝑢 ] ( ◡ E ↾ 𝐴 ) = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ↔ ( 𝐵 ∈ 𝑢 → 𝑢 = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) ) |
| 11 | 5 10 | mpbid | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ElDisj 𝐴 ) ∧ 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ) → ( 𝐵 ∈ 𝑢 → 𝑢 = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) ) |
| 12 | df-coels | ⊢ ∼ 𝐴 = ≀ ( ◡ E ↾ 𝐴 ) | |
| 13 | 12 | eceq2i | ⊢ [ 𝐵 ] ∼ 𝐴 = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) |
| 14 | 13 | eqeq2i | ⊢ ( 𝑢 = [ 𝐵 ] ∼ 𝐴 ↔ 𝑢 = [ 𝐵 ] ≀ ( ◡ E ↾ 𝐴 ) ) |
| 15 | 11 14 | imbitrrdi | ⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ ElDisj 𝐴 ) ∧ 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ) → ( 𝐵 ∈ 𝑢 → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) |
| 16 | 15 | expimpd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ ElDisj 𝐴 ) → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) |
| 17 | 16 | ex | ⊢ ( 𝐵 ∈ 𝑉 → ( ElDisj 𝐴 → ( ( 𝑢 ∈ dom ( ◡ E ↾ 𝐴 ) ∧ 𝐵 ∈ 𝑢 ) → 𝑢 = [ 𝐵 ] ∼ 𝐴 ) ) ) |