This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of an eigenvector. (Contributed by NM, 12-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eigvec1 | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( T ` A ) = ( ( ( eigval ` T ) ` A ) .h A ) /\ A =/= 0h ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigvalval | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) |
|
| 2 | 1 | oveq1d | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( ( eigval ` T ) ` A ) .h A ) = ( ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) ) |
| 3 | eleigvec2 | |- ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) ) ) |
|
| 4 | 3 | biimpa | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) ) |
| 5 | normcan | |- ( ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) -> ( ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) = ( T ` A ) ) |
|
| 6 | 4 5 | syl | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) = ( T ` A ) ) |
| 7 | 2 6 | eqtr2d | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( T ` A ) = ( ( ( eigval ` T ) ` A ) .h A ) ) |
| 8 | 4 | simp2d | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> A =/= 0h ) |
| 9 | 7 8 | jca | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( T ` A ) = ( ( ( eigval ` T ) ` A ) .h A ) /\ A =/= 0h ) ) |