This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eigvalval | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigvalfval | |- ( T : ~H --> ~H -> ( eigval ` T ) = ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) |
|
| 2 | 1 | fveq1d | |- ( T : ~H --> ~H -> ( ( eigval ` T ) ` A ) = ( ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ` A ) ) |
| 3 | fveq2 | |- ( x = A -> ( T ` x ) = ( T ` A ) ) |
|
| 4 | id | |- ( x = A -> x = A ) |
|
| 5 | 3 4 | oveq12d | |- ( x = A -> ( ( T ` x ) .ih x ) = ( ( T ` A ) .ih A ) ) |
| 6 | fveq2 | |- ( x = A -> ( normh ` x ) = ( normh ` A ) ) |
|
| 7 | 6 | oveq1d | |- ( x = A -> ( ( normh ` x ) ^ 2 ) = ( ( normh ` A ) ^ 2 ) ) |
| 8 | 5 7 | oveq12d | |- ( x = A -> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) |
| 9 | eqid | |- ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) = ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) |
|
| 10 | ovex | |- ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) e. _V |
|
| 11 | 8 9 10 | fvmpt | |- ( A e. ( eigvec ` T ) -> ( ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ` A ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) |
| 12 | 2 11 | sylan9eq | |- ( ( T : ~H --> ~H /\ A e. ( eigvec ` T ) ) -> ( ( eigval ` T ) ` A ) = ( ( ( T ` A ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) |