This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 18-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eleigvec2 | |- ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleigvec | |- ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) ) |
|
| 2 | elspansn | |- ( A e. ~H -> ( ( T ` A ) e. ( span ` { A } ) <-> E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
|
| 3 | 2 | adantr | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( T ` A ) e. ( span ` { A } ) <-> E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
| 4 | 3 | pm5.32i | |- ( ( ( A e. ~H /\ A =/= 0h ) /\ ( T ` A ) e. ( span ` { A } ) ) <-> ( ( A e. ~H /\ A =/= 0h ) /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
| 5 | df-3an | |- ( ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) <-> ( ( A e. ~H /\ A =/= 0h ) /\ ( T ` A ) e. ( span ` { A } ) ) ) |
|
| 6 | df-3an | |- ( ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) <-> ( ( A e. ~H /\ A =/= 0h ) /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
|
| 7 | 4 5 6 | 3bitr4i | |- ( ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) <-> ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
| 8 | 1 7 | bitr4di | |- ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> ( A e. ~H /\ A =/= 0h /\ ( T ` A ) e. ( span ` { A } ) ) ) ) |