This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A necessary and sufficient condition (that holds when T is a Hermitian operator) for an eigenvalue B to be real. Generalization of Equation 1.30 of Hughes p. 49. (Contributed by NM, 21-Jan-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eigre.1 | |- A e. ~H |
|
| eigre.2 | |- B e. CC |
||
| Assertion | eigrei | |- ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> B e. RR ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigre.1 | |- A e. ~H |
|
| 2 | eigre.2 | |- B e. CC |
|
| 3 | oveq2 | |- ( ( T ` A ) = ( B .h A ) -> ( A .ih ( T ` A ) ) = ( A .ih ( B .h A ) ) ) |
|
| 4 | his5 | |- ( ( B e. CC /\ A e. ~H /\ A e. ~H ) -> ( A .ih ( B .h A ) ) = ( ( * ` B ) x. ( A .ih A ) ) ) |
|
| 5 | 2 1 1 4 | mp3an | |- ( A .ih ( B .h A ) ) = ( ( * ` B ) x. ( A .ih A ) ) |
| 6 | 3 5 | eqtrdi | |- ( ( T ` A ) = ( B .h A ) -> ( A .ih ( T ` A ) ) = ( ( * ` B ) x. ( A .ih A ) ) ) |
| 7 | oveq1 | |- ( ( T ` A ) = ( B .h A ) -> ( ( T ` A ) .ih A ) = ( ( B .h A ) .ih A ) ) |
|
| 8 | ax-his3 | |- ( ( B e. CC /\ A e. ~H /\ A e. ~H ) -> ( ( B .h A ) .ih A ) = ( B x. ( A .ih A ) ) ) |
|
| 9 | 2 1 1 8 | mp3an | |- ( ( B .h A ) .ih A ) = ( B x. ( A .ih A ) ) |
| 10 | 7 9 | eqtrdi | |- ( ( T ` A ) = ( B .h A ) -> ( ( T ` A ) .ih A ) = ( B x. ( A .ih A ) ) ) |
| 11 | 6 10 | eqeq12d | |- ( ( T ` A ) = ( B .h A ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> ( ( * ` B ) x. ( A .ih A ) ) = ( B x. ( A .ih A ) ) ) ) |
| 12 | 1 1 | hicli | |- ( A .ih A ) e. CC |
| 13 | ax-his4 | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) ) |
|
| 14 | 1 13 | mpan | |- ( A =/= 0h -> 0 < ( A .ih A ) ) |
| 15 | 14 | gt0ne0d | |- ( A =/= 0h -> ( A .ih A ) =/= 0 ) |
| 16 | 2 | cjcli | |- ( * ` B ) e. CC |
| 17 | mulcan2 | |- ( ( ( * ` B ) e. CC /\ B e. CC /\ ( ( A .ih A ) e. CC /\ ( A .ih A ) =/= 0 ) ) -> ( ( ( * ` B ) x. ( A .ih A ) ) = ( B x. ( A .ih A ) ) <-> ( * ` B ) = B ) ) |
|
| 18 | 16 2 17 | mp3an12 | |- ( ( ( A .ih A ) e. CC /\ ( A .ih A ) =/= 0 ) -> ( ( ( * ` B ) x. ( A .ih A ) ) = ( B x. ( A .ih A ) ) <-> ( * ` B ) = B ) ) |
| 19 | 12 15 18 | sylancr | |- ( A =/= 0h -> ( ( ( * ` B ) x. ( A .ih A ) ) = ( B x. ( A .ih A ) ) <-> ( * ` B ) = B ) ) |
| 20 | 11 19 | sylan9bb | |- ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> ( * ` B ) = B ) ) |
| 21 | 2 | cjrebi | |- ( B e. RR <-> ( * ` B ) = B ) |
| 22 | 20 21 | bitr4di | |- ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> B e. RR ) ) |