This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A necessary and sufficient condition (that holds when T is a Hermitian operator) for two eigenvectors A and B to be orthogonal. Generalization of Equation 1.31 of Hughes p. 49. (Contributed by NM, 23-Jan-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eigorthi.1 | |- A e. ~H |
|
| eigorthi.2 | |- B e. ~H |
||
| eigorthi.3 | |- C e. CC |
||
| eigorthi.4 | |- D e. CC |
||
| Assertion | eigorthi | |- ( ( ( ( T ` A ) = ( C .h A ) /\ ( T ` B ) = ( D .h B ) ) /\ C =/= ( * ` D ) ) -> ( ( A .ih ( T ` B ) ) = ( ( T ` A ) .ih B ) <-> ( A .ih B ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigorthi.1 | |- A e. ~H |
|
| 2 | eigorthi.2 | |- B e. ~H |
|
| 3 | eigorthi.3 | |- C e. CC |
|
| 4 | eigorthi.4 | |- D e. CC |
|
| 5 | oveq2 | |- ( ( T ` B ) = ( D .h B ) -> ( A .ih ( T ` B ) ) = ( A .ih ( D .h B ) ) ) |
|
| 6 | his5 | |- ( ( D e. CC /\ A e. ~H /\ B e. ~H ) -> ( A .ih ( D .h B ) ) = ( ( * ` D ) x. ( A .ih B ) ) ) |
|
| 7 | 4 1 2 6 | mp3an | |- ( A .ih ( D .h B ) ) = ( ( * ` D ) x. ( A .ih B ) ) |
| 8 | 5 7 | eqtrdi | |- ( ( T ` B ) = ( D .h B ) -> ( A .ih ( T ` B ) ) = ( ( * ` D ) x. ( A .ih B ) ) ) |
| 9 | oveq1 | |- ( ( T ` A ) = ( C .h A ) -> ( ( T ` A ) .ih B ) = ( ( C .h A ) .ih B ) ) |
|
| 10 | ax-his3 | |- ( ( C e. CC /\ A e. ~H /\ B e. ~H ) -> ( ( C .h A ) .ih B ) = ( C x. ( A .ih B ) ) ) |
|
| 11 | 3 1 2 10 | mp3an | |- ( ( C .h A ) .ih B ) = ( C x. ( A .ih B ) ) |
| 12 | 9 11 | eqtrdi | |- ( ( T ` A ) = ( C .h A ) -> ( ( T ` A ) .ih B ) = ( C x. ( A .ih B ) ) ) |
| 13 | 8 12 | eqeqan12rd | |- ( ( ( T ` A ) = ( C .h A ) /\ ( T ` B ) = ( D .h B ) ) -> ( ( A .ih ( T ` B ) ) = ( ( T ` A ) .ih B ) <-> ( ( * ` D ) x. ( A .ih B ) ) = ( C x. ( A .ih B ) ) ) ) |
| 14 | 1 2 | hicli | |- ( A .ih B ) e. CC |
| 15 | 4 | cjcli | |- ( * ` D ) e. CC |
| 16 | mulcan2 | |- ( ( ( * ` D ) e. CC /\ C e. CC /\ ( ( A .ih B ) e. CC /\ ( A .ih B ) =/= 0 ) ) -> ( ( ( * ` D ) x. ( A .ih B ) ) = ( C x. ( A .ih B ) ) <-> ( * ` D ) = C ) ) |
|
| 17 | 15 3 16 | mp3an12 | |- ( ( ( A .ih B ) e. CC /\ ( A .ih B ) =/= 0 ) -> ( ( ( * ` D ) x. ( A .ih B ) ) = ( C x. ( A .ih B ) ) <-> ( * ` D ) = C ) ) |
| 18 | 14 17 | mpan | |- ( ( A .ih B ) =/= 0 -> ( ( ( * ` D ) x. ( A .ih B ) ) = ( C x. ( A .ih B ) ) <-> ( * ` D ) = C ) ) |
| 19 | eqcom | |- ( ( * ` D ) = C <-> C = ( * ` D ) ) |
|
| 20 | 18 19 | bitrdi | |- ( ( A .ih B ) =/= 0 -> ( ( ( * ` D ) x. ( A .ih B ) ) = ( C x. ( A .ih B ) ) <-> C = ( * ` D ) ) ) |
| 21 | 20 | biimpcd | |- ( ( ( * ` D ) x. ( A .ih B ) ) = ( C x. ( A .ih B ) ) -> ( ( A .ih B ) =/= 0 -> C = ( * ` D ) ) ) |
| 22 | 21 | necon1d | |- ( ( ( * ` D ) x. ( A .ih B ) ) = ( C x. ( A .ih B ) ) -> ( C =/= ( * ` D ) -> ( A .ih B ) = 0 ) ) |
| 23 | 22 | com12 | |- ( C =/= ( * ` D ) -> ( ( ( * ` D ) x. ( A .ih B ) ) = ( C x. ( A .ih B ) ) -> ( A .ih B ) = 0 ) ) |
| 24 | oveq2 | |- ( ( A .ih B ) = 0 -> ( ( * ` D ) x. ( A .ih B ) ) = ( ( * ` D ) x. 0 ) ) |
|
| 25 | oveq2 | |- ( ( A .ih B ) = 0 -> ( C x. ( A .ih B ) ) = ( C x. 0 ) ) |
|
| 26 | 3 | mul01i | |- ( C x. 0 ) = 0 |
| 27 | 15 | mul01i | |- ( ( * ` D ) x. 0 ) = 0 |
| 28 | 26 27 | eqtr4i | |- ( C x. 0 ) = ( ( * ` D ) x. 0 ) |
| 29 | 25 28 | eqtrdi | |- ( ( A .ih B ) = 0 -> ( C x. ( A .ih B ) ) = ( ( * ` D ) x. 0 ) ) |
| 30 | 24 29 | eqtr4d | |- ( ( A .ih B ) = 0 -> ( ( * ` D ) x. ( A .ih B ) ) = ( C x. ( A .ih B ) ) ) |
| 31 | 23 30 | impbid1 | |- ( C =/= ( * ` D ) -> ( ( ( * ` D ) x. ( A .ih B ) ) = ( C x. ( A .ih B ) ) <-> ( A .ih B ) = 0 ) ) |
| 32 | 13 31 | sylan9bb | |- ( ( ( ( T ` A ) = ( C .h A ) /\ ( T ` B ) = ( D .h B ) ) /\ C =/= ( * ` D ) ) -> ( ( A .ih ( T ` B ) ) = ( ( T ` A ) .ih B ) <-> ( A .ih B ) = 0 ) ) |