This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The von Mangoldt is closed in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efvmacl | |- ( A e. NN -> ( exp ` ( Lam ` A ) ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( ( Lam ` A ) = 0 -> ( exp ` ( Lam ` A ) ) = ( exp ` 0 ) ) |
|
| 2 | ef0 | |- ( exp ` 0 ) = 1 |
|
| 3 | 1 2 | eqtrdi | |- ( ( Lam ` A ) = 0 -> ( exp ` ( Lam ` A ) ) = 1 ) |
| 4 | 3 | eleq1d | |- ( ( Lam ` A ) = 0 -> ( ( exp ` ( Lam ` A ) ) e. NN <-> 1 e. NN ) ) |
| 5 | isppw2 | |- ( A e. NN -> ( ( Lam ` A ) =/= 0 <-> E. p e. Prime E. k e. NN A = ( p ^ k ) ) ) |
|
| 6 | vmappw | |- ( ( p e. Prime /\ k e. NN ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
|
| 7 | 6 | fveq2d | |- ( ( p e. Prime /\ k e. NN ) -> ( exp ` ( Lam ` ( p ^ k ) ) ) = ( exp ` ( log ` p ) ) ) |
| 8 | prmnn | |- ( p e. Prime -> p e. NN ) |
|
| 9 | 8 | nnrpd | |- ( p e. Prime -> p e. RR+ ) |
| 10 | 9 | reeflogd | |- ( p e. Prime -> ( exp ` ( log ` p ) ) = p ) |
| 11 | 10 8 | eqeltrd | |- ( p e. Prime -> ( exp ` ( log ` p ) ) e. NN ) |
| 12 | 11 | adantr | |- ( ( p e. Prime /\ k e. NN ) -> ( exp ` ( log ` p ) ) e. NN ) |
| 13 | 7 12 | eqeltrd | |- ( ( p e. Prime /\ k e. NN ) -> ( exp ` ( Lam ` ( p ^ k ) ) ) e. NN ) |
| 14 | fveq2 | |- ( A = ( p ^ k ) -> ( Lam ` A ) = ( Lam ` ( p ^ k ) ) ) |
|
| 15 | 14 | fveq2d | |- ( A = ( p ^ k ) -> ( exp ` ( Lam ` A ) ) = ( exp ` ( Lam ` ( p ^ k ) ) ) ) |
| 16 | 15 | eleq1d | |- ( A = ( p ^ k ) -> ( ( exp ` ( Lam ` A ) ) e. NN <-> ( exp ` ( Lam ` ( p ^ k ) ) ) e. NN ) ) |
| 17 | 13 16 | syl5ibrcom | |- ( ( p e. Prime /\ k e. NN ) -> ( A = ( p ^ k ) -> ( exp ` ( Lam ` A ) ) e. NN ) ) |
| 18 | 17 | rexlimivv | |- ( E. p e. Prime E. k e. NN A = ( p ^ k ) -> ( exp ` ( Lam ` A ) ) e. NN ) |
| 19 | 5 18 | biimtrdi | |- ( A e. NN -> ( ( Lam ` A ) =/= 0 -> ( exp ` ( Lam ` A ) ) e. NN ) ) |
| 20 | 19 | imp | |- ( ( A e. NN /\ ( Lam ` A ) =/= 0 ) -> ( exp ` ( Lam ` A ) ) e. NN ) |
| 21 | 1nn | |- 1 e. NN |
|
| 22 | 21 | a1i | |- ( A e. NN -> 1 e. NN ) |
| 23 | 4 20 22 | pm2.61ne | |- ( A e. NN -> ( exp ` ( Lam ` A ) ) e. NN ) |