This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The von Mangoldt function is nonnegative. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vmage0 | |- ( A e. NN -> 0 <_ ( Lam ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ef0 | |- ( exp ` 0 ) = 1 |
|
| 2 | efvmacl | |- ( A e. NN -> ( exp ` ( Lam ` A ) ) e. NN ) |
|
| 3 | 2 | nnge1d | |- ( A e. NN -> 1 <_ ( exp ` ( Lam ` A ) ) ) |
| 4 | 1 3 | eqbrtrid | |- ( A e. NN -> ( exp ` 0 ) <_ ( exp ` ( Lam ` A ) ) ) |
| 5 | 0re | |- 0 e. RR |
|
| 6 | vmacl | |- ( A e. NN -> ( Lam ` A ) e. RR ) |
|
| 7 | efle | |- ( ( 0 e. RR /\ ( Lam ` A ) e. RR ) -> ( 0 <_ ( Lam ` A ) <-> ( exp ` 0 ) <_ ( exp ` ( Lam ` A ) ) ) ) |
|
| 8 | 5 6 7 | sylancr | |- ( A e. NN -> ( 0 <_ ( Lam ` A ) <-> ( exp ` 0 ) <_ ( exp ` ( Lam ` A ) ) ) ) |
| 9 | 4 8 | mpbird | |- ( A e. NN -> 0 <_ ( Lam ` A ) ) |