This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efmival | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | mulneg12 | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) = ( i · - 𝐴 ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( - i · 𝐴 ) = ( i · - 𝐴 ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) = ( exp ‘ ( i · - 𝐴 ) ) ) |
| 5 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 6 | efival | ⊢ ( - 𝐴 ∈ ℂ → ( exp ‘ ( i · - 𝐴 ) ) = ( ( cos ‘ - 𝐴 ) + ( i · ( sin ‘ - 𝐴 ) ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · - 𝐴 ) ) = ( ( cos ‘ - 𝐴 ) + ( i · ( sin ‘ - 𝐴 ) ) ) ) |
| 8 | cosneg | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) | |
| 9 | sinneg | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ - 𝐴 ) = - ( sin ‘ 𝐴 ) ) | |
| 10 | 9 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( i · ( sin ‘ - 𝐴 ) ) = ( i · - ( sin ‘ 𝐴 ) ) ) |
| 11 | sincl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) | |
| 12 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · - ( sin ‘ 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) | |
| 13 | 1 11 12 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · - ( sin ‘ 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) |
| 14 | 10 13 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( i · ( sin ‘ - 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) |
| 15 | 8 14 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ - 𝐴 ) + ( i · ( sin ‘ - 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) + - ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 16 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 17 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) | |
| 18 | 1 11 17 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
| 19 | 16 18 | negsubd | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) + - ( i · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 20 | 15 19 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ - 𝐴 ) + ( i · ( sin ‘ - 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 21 | 7 20 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · - 𝐴 ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 22 | 4 21 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) |