This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of the argument is the quotient of the real part and the absolute value. Compare to efiarg . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cosargd.1 | |- ( ph -> X e. CC ) |
|
| cosargd.2 | |- ( ph -> X =/= 0 ) |
||
| Assertion | cosargd | |- ( ph -> ( cos ` ( Im ` ( log ` X ) ) ) = ( ( Re ` X ) / ( abs ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosargd.1 | |- ( ph -> X e. CC ) |
|
| 2 | cosargd.2 | |- ( ph -> X =/= 0 ) |
|
| 3 | 1 | cjcld | |- ( ph -> ( * ` X ) e. CC ) |
| 4 | 1 3 | addcld | |- ( ph -> ( X + ( * ` X ) ) e. CC ) |
| 5 | 1 | abscld | |- ( ph -> ( abs ` X ) e. RR ) |
| 6 | 5 | recnd | |- ( ph -> ( abs ` X ) e. CC ) |
| 7 | 2cnd | |- ( ph -> 2 e. CC ) |
|
| 8 | 1 2 | absne0d | |- ( ph -> ( abs ` X ) =/= 0 ) |
| 9 | 2ne0 | |- 2 =/= 0 |
|
| 10 | 9 | a1i | |- ( ph -> 2 =/= 0 ) |
| 11 | 4 6 7 8 10 | divdiv32d | |- ( ph -> ( ( ( X + ( * ` X ) ) / ( abs ` X ) ) / 2 ) = ( ( ( X + ( * ` X ) ) / 2 ) / ( abs ` X ) ) ) |
| 12 | 1 2 | logcld | |- ( ph -> ( log ` X ) e. CC ) |
| 13 | 12 | imcld | |- ( ph -> ( Im ` ( log ` X ) ) e. RR ) |
| 14 | 13 | recnd | |- ( ph -> ( Im ` ( log ` X ) ) e. CC ) |
| 15 | cosval | |- ( ( Im ` ( log ` X ) ) e. CC -> ( cos ` ( Im ` ( log ` X ) ) ) = ( ( ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) + ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) ) / 2 ) ) |
|
| 16 | 14 15 | syl | |- ( ph -> ( cos ` ( Im ` ( log ` X ) ) ) = ( ( ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) + ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) ) / 2 ) ) |
| 17 | efiarg | |- ( ( X e. CC /\ X =/= 0 ) -> ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) = ( X / ( abs ` X ) ) ) |
|
| 18 | 1 2 17 | syl2anc | |- ( ph -> ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) = ( X / ( abs ` X ) ) ) |
| 19 | ax-icn | |- _i e. CC |
|
| 20 | 19 | a1i | |- ( ph -> _i e. CC ) |
| 21 | 20 14 | mulcld | |- ( ph -> ( _i x. ( Im ` ( log ` X ) ) ) e. CC ) |
| 22 | efcj | |- ( ( _i x. ( Im ` ( log ` X ) ) ) e. CC -> ( exp ` ( * ` ( _i x. ( Im ` ( log ` X ) ) ) ) ) = ( * ` ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) ) ) |
|
| 23 | 21 22 | syl | |- ( ph -> ( exp ` ( * ` ( _i x. ( Im ` ( log ` X ) ) ) ) ) = ( * ` ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) ) ) |
| 24 | 20 14 | cjmuld | |- ( ph -> ( * ` ( _i x. ( Im ` ( log ` X ) ) ) ) = ( ( * ` _i ) x. ( * ` ( Im ` ( log ` X ) ) ) ) ) |
| 25 | cji | |- ( * ` _i ) = -u _i |
|
| 26 | 25 | a1i | |- ( ph -> ( * ` _i ) = -u _i ) |
| 27 | 13 | cjred | |- ( ph -> ( * ` ( Im ` ( log ` X ) ) ) = ( Im ` ( log ` X ) ) ) |
| 28 | 26 27 | oveq12d | |- ( ph -> ( ( * ` _i ) x. ( * ` ( Im ` ( log ` X ) ) ) ) = ( -u _i x. ( Im ` ( log ` X ) ) ) ) |
| 29 | 24 28 | eqtrd | |- ( ph -> ( * ` ( _i x. ( Im ` ( log ` X ) ) ) ) = ( -u _i x. ( Im ` ( log ` X ) ) ) ) |
| 30 | 29 | fveq2d | |- ( ph -> ( exp ` ( * ` ( _i x. ( Im ` ( log ` X ) ) ) ) ) = ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) ) |
| 31 | 18 | fveq2d | |- ( ph -> ( * ` ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) ) = ( * ` ( X / ( abs ` X ) ) ) ) |
| 32 | 23 30 31 | 3eqtr3d | |- ( ph -> ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) = ( * ` ( X / ( abs ` X ) ) ) ) |
| 33 | 1 6 8 | cjdivd | |- ( ph -> ( * ` ( X / ( abs ` X ) ) ) = ( ( * ` X ) / ( * ` ( abs ` X ) ) ) ) |
| 34 | 5 | cjred | |- ( ph -> ( * ` ( abs ` X ) ) = ( abs ` X ) ) |
| 35 | 34 | oveq2d | |- ( ph -> ( ( * ` X ) / ( * ` ( abs ` X ) ) ) = ( ( * ` X ) / ( abs ` X ) ) ) |
| 36 | 32 33 35 | 3eqtrd | |- ( ph -> ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) = ( ( * ` X ) / ( abs ` X ) ) ) |
| 37 | 18 36 | oveq12d | |- ( ph -> ( ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) + ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) ) = ( ( X / ( abs ` X ) ) + ( ( * ` X ) / ( abs ` X ) ) ) ) |
| 38 | 1 3 6 8 | divdird | |- ( ph -> ( ( X + ( * ` X ) ) / ( abs ` X ) ) = ( ( X / ( abs ` X ) ) + ( ( * ` X ) / ( abs ` X ) ) ) ) |
| 39 | 37 38 | eqtr4d | |- ( ph -> ( ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) + ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) ) = ( ( X + ( * ` X ) ) / ( abs ` X ) ) ) |
| 40 | 39 | oveq1d | |- ( ph -> ( ( ( exp ` ( _i x. ( Im ` ( log ` X ) ) ) ) + ( exp ` ( -u _i x. ( Im ` ( log ` X ) ) ) ) ) / 2 ) = ( ( ( X + ( * ` X ) ) / ( abs ` X ) ) / 2 ) ) |
| 41 | 16 40 | eqtrd | |- ( ph -> ( cos ` ( Im ` ( log ` X ) ) ) = ( ( ( X + ( * ` X ) ) / ( abs ` X ) ) / 2 ) ) |
| 42 | reval | |- ( X e. CC -> ( Re ` X ) = ( ( X + ( * ` X ) ) / 2 ) ) |
|
| 43 | 1 42 | syl | |- ( ph -> ( Re ` X ) = ( ( X + ( * ` X ) ) / 2 ) ) |
| 44 | 43 | oveq1d | |- ( ph -> ( ( Re ` X ) / ( abs ` X ) ) = ( ( ( X + ( * ` X ) ) / 2 ) / ( abs ` X ) ) ) |
| 45 | 11 41 44 | 3eqtr4d | |- ( ph -> ( cos ` ( Im ` ( log ` X ) ) ) = ( ( Re ` X ) / ( abs ` X ) ) ) |