This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006) (Revised by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efcvgfsum.1 | |- F = ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ^ k ) / ( ! ` k ) ) ) |
|
| Assertion | efcvgfsum | |- ( A e. CC -> F ~~> ( exp ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efcvgfsum.1 | |- F = ( n e. NN0 |-> sum_ k e. ( 0 ... n ) ( ( A ^ k ) / ( ! ` k ) ) ) |
|
| 2 | oveq2 | |- ( n = j -> ( 0 ... n ) = ( 0 ... j ) ) |
|
| 3 | 2 | sumeq1d | |- ( n = j -> sum_ k e. ( 0 ... n ) ( ( A ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... j ) ( ( A ^ k ) / ( ! ` k ) ) ) |
| 4 | sumex | |- sum_ k e. ( 0 ... j ) ( ( A ^ k ) / ( ! ` k ) ) e. _V |
|
| 5 | 3 1 4 | fvmpt | |- ( j e. NN0 -> ( F ` j ) = sum_ k e. ( 0 ... j ) ( ( A ^ k ) / ( ! ` k ) ) ) |
| 6 | 5 | adantl | |- ( ( A e. CC /\ j e. NN0 ) -> ( F ` j ) = sum_ k e. ( 0 ... j ) ( ( A ^ k ) / ( ! ` k ) ) ) |
| 7 | elfznn0 | |- ( k e. ( 0 ... j ) -> k e. NN0 ) |
|
| 8 | 7 | adantl | |- ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> k e. NN0 ) |
| 9 | eqid | |- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 10 | 9 | eftval | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 11 | 8 10 | syl | |- ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 12 | simpr | |- ( ( A e. CC /\ j e. NN0 ) -> j e. NN0 ) |
|
| 13 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 14 | 12 13 | eleqtrdi | |- ( ( A e. CC /\ j e. NN0 ) -> j e. ( ZZ>= ` 0 ) ) |
| 15 | simpll | |- ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> A e. CC ) |
|
| 16 | eftcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
|
| 17 | 15 8 16 | syl2anc | |- ( ( ( A e. CC /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
| 18 | 11 14 17 | fsumser | |- ( ( A e. CC /\ j e. NN0 ) -> sum_ k e. ( 0 ... j ) ( ( A ^ k ) / ( ! ` k ) ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) |
| 19 | 6 18 | eqtrd | |- ( ( A e. CC /\ j e. NN0 ) -> ( F ` j ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) |
| 20 | 19 | ralrimiva | |- ( A e. CC -> A. j e. NN0 ( F ` j ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) |
| 21 | sumex | |- sum_ k e. ( 0 ... n ) ( ( A ^ k ) / ( ! ` k ) ) e. _V |
|
| 22 | 21 1 | fnmpti | |- F Fn NN0 |
| 23 | 0z | |- 0 e. ZZ |
|
| 24 | seqfn | |- ( 0 e. ZZ -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn ( ZZ>= ` 0 ) ) |
|
| 25 | 23 24 | ax-mp | |- seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn ( ZZ>= ` 0 ) |
| 26 | 13 | fneq2i | |- ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn NN0 <-> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn ( ZZ>= ` 0 ) ) |
| 27 | 25 26 | mpbir | |- seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn NN0 |
| 28 | eqfnfv | |- ( ( F Fn NN0 /\ seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) Fn NN0 ) -> ( F = seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) <-> A. j e. NN0 ( F ` j ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) ) |
|
| 29 | 22 27 28 | mp2an | |- ( F = seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) <-> A. j e. NN0 ( F ` j ) = ( seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ` j ) ) |
| 30 | 20 29 | sylibr | |- ( A e. CC -> F = seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ) |
| 31 | 9 | efcvg | |- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` A ) ) |
| 32 | 30 31 | eqbrtrd | |- ( A e. CC -> F ~~> ( exp ` A ) ) |