This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 11-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efgh.1 | |- F = ( x e. X |-> ( exp ` ( A x. x ) ) ) |
|
| Assertion | efgh | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( F ` ( B + C ) ) = ( ( F ` B ) x. ( F ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgh.1 | |- F = ( x e. X |-> ( exp ` ( A x. x ) ) ) |
|
| 2 | simp1l | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> A e. CC ) |
|
| 3 | simp1r | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> X e. ( SubGrp ` CCfld ) ) |
|
| 4 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 5 | 4 | subgss | |- ( X e. ( SubGrp ` CCfld ) -> X C_ CC ) |
| 6 | 3 5 | syl | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> X C_ CC ) |
| 7 | simp2 | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> B e. X ) |
|
| 8 | 6 7 | sseldd | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> B e. CC ) |
| 9 | simp3 | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> C e. X ) |
|
| 10 | 6 9 | sseldd | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> C e. CC ) |
| 11 | 2 8 10 | adddid | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( A x. ( B + C ) ) = ( ( A x. B ) + ( A x. C ) ) ) |
| 12 | 11 | fveq2d | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( A x. ( B + C ) ) ) = ( exp ` ( ( A x. B ) + ( A x. C ) ) ) ) |
| 13 | 2 8 | mulcld | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( A x. B ) e. CC ) |
| 14 | 2 10 | mulcld | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( A x. C ) e. CC ) |
| 15 | efadd | |- ( ( ( A x. B ) e. CC /\ ( A x. C ) e. CC ) -> ( exp ` ( ( A x. B ) + ( A x. C ) ) ) = ( ( exp ` ( A x. B ) ) x. ( exp ` ( A x. C ) ) ) ) |
|
| 16 | 13 14 15 | syl2anc | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( ( A x. B ) + ( A x. C ) ) ) = ( ( exp ` ( A x. B ) ) x. ( exp ` ( A x. C ) ) ) ) |
| 17 | 12 16 | eqtrd | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( A x. ( B + C ) ) ) = ( ( exp ` ( A x. B ) ) x. ( exp ` ( A x. C ) ) ) ) |
| 18 | oveq2 | |- ( x = y -> ( A x. x ) = ( A x. y ) ) |
|
| 19 | 18 | fveq2d | |- ( x = y -> ( exp ` ( A x. x ) ) = ( exp ` ( A x. y ) ) ) |
| 20 | 19 | cbvmptv | |- ( x e. X |-> ( exp ` ( A x. x ) ) ) = ( y e. X |-> ( exp ` ( A x. y ) ) ) |
| 21 | 1 20 | eqtri | |- F = ( y e. X |-> ( exp ` ( A x. y ) ) ) |
| 22 | oveq2 | |- ( y = ( B + C ) -> ( A x. y ) = ( A x. ( B + C ) ) ) |
|
| 23 | 22 | fveq2d | |- ( y = ( B + C ) -> ( exp ` ( A x. y ) ) = ( exp ` ( A x. ( B + C ) ) ) ) |
| 24 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 25 | 24 | subgcl | |- ( ( X e. ( SubGrp ` CCfld ) /\ B e. X /\ C e. X ) -> ( B + C ) e. X ) |
| 26 | 25 | 3adant1l | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( B + C ) e. X ) |
| 27 | fvexd | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( A x. ( B + C ) ) ) e. _V ) |
|
| 28 | 21 23 26 27 | fvmptd3 | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( F ` ( B + C ) ) = ( exp ` ( A x. ( B + C ) ) ) ) |
| 29 | oveq2 | |- ( y = B -> ( A x. y ) = ( A x. B ) ) |
|
| 30 | 29 | fveq2d | |- ( y = B -> ( exp ` ( A x. y ) ) = ( exp ` ( A x. B ) ) ) |
| 31 | fvexd | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( A x. B ) ) e. _V ) |
|
| 32 | 21 30 7 31 | fvmptd3 | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( F ` B ) = ( exp ` ( A x. B ) ) ) |
| 33 | oveq2 | |- ( y = C -> ( A x. y ) = ( A x. C ) ) |
|
| 34 | 33 | fveq2d | |- ( y = C -> ( exp ` ( A x. y ) ) = ( exp ` ( A x. C ) ) ) |
| 35 | fvexd | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( exp ` ( A x. C ) ) e. _V ) |
|
| 36 | 21 34 9 35 | fvmptd3 | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( F ` C ) = ( exp ` ( A x. C ) ) ) |
| 37 | 32 36 | oveq12d | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( ( F ` B ) x. ( F ` C ) ) = ( ( exp ` ( A x. B ) ) x. ( exp ` ( A x. C ) ) ) ) |
| 38 | 17 28 37 | 3eqtr4d | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ B e. X /\ C e. X ) -> ( F ` ( B + C ) ) = ( ( F ` B ) x. ( F ` C ) ) ) |