This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgabl.h | |- H = ( G |`s S ) |
|
| Assertion | subgabl | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> H e. Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgabl.h | |- H = ( G |`s S ) |
|
| 2 | 1 | subgbas | |- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
| 3 | 2 | adantl | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> S = ( Base ` H ) ) |
| 4 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 5 | 1 4 | ressplusg | |- ( S e. ( SubGrp ` G ) -> ( +g ` G ) = ( +g ` H ) ) |
| 6 | 5 | adantl | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> ( +g ` G ) = ( +g ` H ) ) |
| 7 | 1 | subggrp | |- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
| 8 | 7 | adantl | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> H e. Grp ) |
| 9 | simp1l | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> G e. Abel ) |
|
| 10 | simp1r | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> S e. ( SubGrp ` G ) ) |
|
| 11 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 12 | 11 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 13 | 10 12 | syl | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> S C_ ( Base ` G ) ) |
| 14 | simp2 | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> x e. S ) |
|
| 15 | 13 14 | sseldd | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> x e. ( Base ` G ) ) |
| 16 | simp3 | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> y e. S ) |
|
| 17 | 13 16 | sseldd | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> y e. ( Base ` G ) ) |
| 18 | 11 4 | ablcom | |- ( ( G e. Abel /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 19 | 9 15 17 18 | syl3anc | |- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 20 | 3 6 8 19 | isabld | |- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> H e. Abel ) |