This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of 2pi i is 1 . (Contributed by Mario Carneiro, 9-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ef2pi | |- ( exp ` ( _i x. ( 2 x. _pi ) ) ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn | |- 2 e. CC |
|
| 2 | picn | |- _pi e. CC |
|
| 3 | 1 2 | mulcli | |- ( 2 x. _pi ) e. CC |
| 4 | efival | |- ( ( 2 x. _pi ) e. CC -> ( exp ` ( _i x. ( 2 x. _pi ) ) ) = ( ( cos ` ( 2 x. _pi ) ) + ( _i x. ( sin ` ( 2 x. _pi ) ) ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( exp ` ( _i x. ( 2 x. _pi ) ) ) = ( ( cos ` ( 2 x. _pi ) ) + ( _i x. ( sin ` ( 2 x. _pi ) ) ) ) |
| 6 | cos2pi | |- ( cos ` ( 2 x. _pi ) ) = 1 |
|
| 7 | sin2pi | |- ( sin ` ( 2 x. _pi ) ) = 0 |
|
| 8 | 7 | oveq2i | |- ( _i x. ( sin ` ( 2 x. _pi ) ) ) = ( _i x. 0 ) |
| 9 | it0e0 | |- ( _i x. 0 ) = 0 |
|
| 10 | 8 9 | eqtri | |- ( _i x. ( sin ` ( 2 x. _pi ) ) ) = 0 |
| 11 | 6 10 | oveq12i | |- ( ( cos ` ( 2 x. _pi ) ) + ( _i x. ( sin ` ( 2 x. _pi ) ) ) ) = ( 1 + 0 ) |
| 12 | 1p0e1 | |- ( 1 + 0 ) = 1 |
|
| 13 | 11 12 | eqtri | |- ( ( cos ` ( 2 x. _pi ) ) + ( _i x. ( sin ` ( 2 x. _pi ) ) ) ) = 1 |
| 14 | 5 13 | eqtri | |- ( exp ` ( _i x. ( 2 x. _pi ) ) ) = 1 |