This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of 2 _pi is 1. (Contributed by Paul Chapman, 23-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cos2pi | |- ( cos ` ( 2 x. _pi ) ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | |- _pi e. CC |
|
| 2 | cos2t | |- ( _pi e. CC -> ( cos ` ( 2 x. _pi ) ) = ( ( 2 x. ( ( cos ` _pi ) ^ 2 ) ) - 1 ) ) |
|
| 3 | 1 2 | ax-mp | |- ( cos ` ( 2 x. _pi ) ) = ( ( 2 x. ( ( cos ` _pi ) ^ 2 ) ) - 1 ) |
| 4 | cospi | |- ( cos ` _pi ) = -u 1 |
|
| 5 | 4 | oveq1i | |- ( ( cos ` _pi ) ^ 2 ) = ( -u 1 ^ 2 ) |
| 6 | ax-1cn | |- 1 e. CC |
|
| 7 | sqneg | |- ( 1 e. CC -> ( -u 1 ^ 2 ) = ( 1 ^ 2 ) ) |
|
| 8 | 6 7 | ax-mp | |- ( -u 1 ^ 2 ) = ( 1 ^ 2 ) |
| 9 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 10 | 5 8 9 | 3eqtri | |- ( ( cos ` _pi ) ^ 2 ) = 1 |
| 11 | 10 | oveq2i | |- ( 2 x. ( ( cos ` _pi ) ^ 2 ) ) = ( 2 x. 1 ) |
| 12 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 13 | 11 12 | eqtri | |- ( 2 x. ( ( cos ` _pi ) ^ 2 ) ) = 2 |
| 14 | 13 | oveq1i | |- ( ( 2 x. ( ( cos ` _pi ) ^ 2 ) ) - 1 ) = ( 2 - 1 ) |
| 15 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 16 | 3 14 15 | 3eqtri | |- ( cos ` ( 2 x. _pi ) ) = 1 |