This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of 2 _pi is 0. (Contributed by Paul Chapman, 23-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sin2pi | |- ( sin ` ( 2 x. _pi ) ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | |- _pi e. CC |
|
| 2 | sin2t | |- ( _pi e. CC -> ( sin ` ( 2 x. _pi ) ) = ( 2 x. ( ( sin ` _pi ) x. ( cos ` _pi ) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( sin ` ( 2 x. _pi ) ) = ( 2 x. ( ( sin ` _pi ) x. ( cos ` _pi ) ) ) |
| 4 | sinpi | |- ( sin ` _pi ) = 0 |
|
| 5 | cospi | |- ( cos ` _pi ) = -u 1 |
|
| 6 | 4 5 | oveq12i | |- ( ( sin ` _pi ) x. ( cos ` _pi ) ) = ( 0 x. -u 1 ) |
| 7 | neg1cn | |- -u 1 e. CC |
|
| 8 | 7 | mul02i | |- ( 0 x. -u 1 ) = 0 |
| 9 | 6 8 | eqtri | |- ( ( sin ` _pi ) x. ( cos ` _pi ) ) = 0 |
| 10 | 9 | oveq2i | |- ( 2 x. ( ( sin ` _pi ) x. ( cos ` _pi ) ) ) = ( 2 x. 0 ) |
| 11 | 2t0e0 | |- ( 2 x. 0 ) = 0 |
|
| 12 | 10 11 | eqtri | |- ( 2 x. ( ( sin ` _pi ) x. ( cos ` _pi ) ) ) = 0 |
| 13 | 3 12 | eqtri | |- ( sin ` ( 2 x. _pi ) ) = 0 |