This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of 2pi i is 1 . (Contributed by Mario Carneiro, 9-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ef2pi | ⊢ ( exp ‘ ( i · ( 2 · π ) ) ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn | ⊢ 2 ∈ ℂ | |
| 2 | picn | ⊢ π ∈ ℂ | |
| 3 | 1 2 | mulcli | ⊢ ( 2 · π ) ∈ ℂ |
| 4 | efival | ⊢ ( ( 2 · π ) ∈ ℂ → ( exp ‘ ( i · ( 2 · π ) ) ) = ( ( cos ‘ ( 2 · π ) ) + ( i · ( sin ‘ ( 2 · π ) ) ) ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( exp ‘ ( i · ( 2 · π ) ) ) = ( ( cos ‘ ( 2 · π ) ) + ( i · ( sin ‘ ( 2 · π ) ) ) ) |
| 6 | cos2pi | ⊢ ( cos ‘ ( 2 · π ) ) = 1 | |
| 7 | sin2pi | ⊢ ( sin ‘ ( 2 · π ) ) = 0 | |
| 8 | 7 | oveq2i | ⊢ ( i · ( sin ‘ ( 2 · π ) ) ) = ( i · 0 ) |
| 9 | it0e0 | ⊢ ( i · 0 ) = 0 | |
| 10 | 8 9 | eqtri | ⊢ ( i · ( sin ‘ ( 2 · π ) ) ) = 0 |
| 11 | 6 10 | oveq12i | ⊢ ( ( cos ‘ ( 2 · π ) ) + ( i · ( sin ‘ ( 2 · π ) ) ) ) = ( 1 + 0 ) |
| 12 | 1p0e1 | ⊢ ( 1 + 0 ) = 1 | |
| 13 | 11 12 | eqtri | ⊢ ( ( cos ‘ ( 2 · π ) ) + ( i · ( sin ‘ ( 2 · π ) ) ) ) = 1 |
| 14 | 5 13 | eqtri | ⊢ ( exp ‘ ( i · ( 2 · π ) ) ) = 1 |