This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Assuming that operation F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation .~ , specified by the first hypothesis, is transitive. (Contributed by NM, 11-Feb-1996) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecopopr.1 | |- .~ = { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z .+ u ) = ( w .+ v ) ) ) } |
|
| ecopopr.com | |- ( x .+ y ) = ( y .+ x ) |
||
| ecopopr.cl | |- ( ( x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
||
| ecopopr.ass | |- ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) |
||
| ecopopr.can | |- ( ( x e. S /\ y e. S ) -> ( ( x .+ y ) = ( x .+ z ) -> y = z ) ) |
||
| Assertion | ecopovtrn | |- ( ( A .~ B /\ B .~ C ) -> A .~ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 | |- .~ = { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z .+ u ) = ( w .+ v ) ) ) } |
|
| 2 | ecopopr.com | |- ( x .+ y ) = ( y .+ x ) |
|
| 3 | ecopopr.cl | |- ( ( x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
|
| 4 | ecopopr.ass | |- ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) |
|
| 5 | ecopopr.can | |- ( ( x e. S /\ y e. S ) -> ( ( x .+ y ) = ( x .+ z ) -> y = z ) ) |
|
| 6 | opabssxp | |- { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z .+ u ) = ( w .+ v ) ) ) } C_ ( ( S X. S ) X. ( S X. S ) ) |
|
| 7 | 1 6 | eqsstri | |- .~ C_ ( ( S X. S ) X. ( S X. S ) ) |
| 8 | 7 | brel | |- ( A .~ B -> ( A e. ( S X. S ) /\ B e. ( S X. S ) ) ) |
| 9 | 8 | simpld | |- ( A .~ B -> A e. ( S X. S ) ) |
| 10 | 7 | brel | |- ( B .~ C -> ( B e. ( S X. S ) /\ C e. ( S X. S ) ) ) |
| 11 | 9 10 | anim12i | |- ( ( A .~ B /\ B .~ C ) -> ( A e. ( S X. S ) /\ ( B e. ( S X. S ) /\ C e. ( S X. S ) ) ) ) |
| 12 | 3anass | |- ( ( A e. ( S X. S ) /\ B e. ( S X. S ) /\ C e. ( S X. S ) ) <-> ( A e. ( S X. S ) /\ ( B e. ( S X. S ) /\ C e. ( S X. S ) ) ) ) |
|
| 13 | 11 12 | sylibr | |- ( ( A .~ B /\ B .~ C ) -> ( A e. ( S X. S ) /\ B e. ( S X. S ) /\ C e. ( S X. S ) ) ) |
| 14 | eqid | |- ( S X. S ) = ( S X. S ) |
|
| 15 | breq1 | |- ( <. f , g >. = A -> ( <. f , g >. .~ <. h , t >. <-> A .~ <. h , t >. ) ) |
|
| 16 | 15 | anbi1d | |- ( <. f , g >. = A -> ( ( <. f , g >. .~ <. h , t >. /\ <. h , t >. .~ <. s , r >. ) <-> ( A .~ <. h , t >. /\ <. h , t >. .~ <. s , r >. ) ) ) |
| 17 | breq1 | |- ( <. f , g >. = A -> ( <. f , g >. .~ <. s , r >. <-> A .~ <. s , r >. ) ) |
|
| 18 | 16 17 | imbi12d | |- ( <. f , g >. = A -> ( ( ( <. f , g >. .~ <. h , t >. /\ <. h , t >. .~ <. s , r >. ) -> <. f , g >. .~ <. s , r >. ) <-> ( ( A .~ <. h , t >. /\ <. h , t >. .~ <. s , r >. ) -> A .~ <. s , r >. ) ) ) |
| 19 | breq2 | |- ( <. h , t >. = B -> ( A .~ <. h , t >. <-> A .~ B ) ) |
|
| 20 | breq1 | |- ( <. h , t >. = B -> ( <. h , t >. .~ <. s , r >. <-> B .~ <. s , r >. ) ) |
|
| 21 | 19 20 | anbi12d | |- ( <. h , t >. = B -> ( ( A .~ <. h , t >. /\ <. h , t >. .~ <. s , r >. ) <-> ( A .~ B /\ B .~ <. s , r >. ) ) ) |
| 22 | 21 | imbi1d | |- ( <. h , t >. = B -> ( ( ( A .~ <. h , t >. /\ <. h , t >. .~ <. s , r >. ) -> A .~ <. s , r >. ) <-> ( ( A .~ B /\ B .~ <. s , r >. ) -> A .~ <. s , r >. ) ) ) |
| 23 | breq2 | |- ( <. s , r >. = C -> ( B .~ <. s , r >. <-> B .~ C ) ) |
|
| 24 | 23 | anbi2d | |- ( <. s , r >. = C -> ( ( A .~ B /\ B .~ <. s , r >. ) <-> ( A .~ B /\ B .~ C ) ) ) |
| 25 | breq2 | |- ( <. s , r >. = C -> ( A .~ <. s , r >. <-> A .~ C ) ) |
|
| 26 | 24 25 | imbi12d | |- ( <. s , r >. = C -> ( ( ( A .~ B /\ B .~ <. s , r >. ) -> A .~ <. s , r >. ) <-> ( ( A .~ B /\ B .~ C ) -> A .~ C ) ) ) |
| 27 | 1 | ecopoveq | |- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) ) -> ( <. f , g >. .~ <. h , t >. <-> ( f .+ t ) = ( g .+ h ) ) ) |
| 28 | 27 | 3adant3 | |- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) /\ ( s e. S /\ r e. S ) ) -> ( <. f , g >. .~ <. h , t >. <-> ( f .+ t ) = ( g .+ h ) ) ) |
| 29 | 1 | ecopoveq | |- ( ( ( h e. S /\ t e. S ) /\ ( s e. S /\ r e. S ) ) -> ( <. h , t >. .~ <. s , r >. <-> ( h .+ r ) = ( t .+ s ) ) ) |
| 30 | 29 | 3adant1 | |- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) /\ ( s e. S /\ r e. S ) ) -> ( <. h , t >. .~ <. s , r >. <-> ( h .+ r ) = ( t .+ s ) ) ) |
| 31 | 28 30 | anbi12d | |- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) /\ ( s e. S /\ r e. S ) ) -> ( ( <. f , g >. .~ <. h , t >. /\ <. h , t >. .~ <. s , r >. ) <-> ( ( f .+ t ) = ( g .+ h ) /\ ( h .+ r ) = ( t .+ s ) ) ) ) |
| 32 | oveq12 | |- ( ( ( f .+ t ) = ( g .+ h ) /\ ( h .+ r ) = ( t .+ s ) ) -> ( ( f .+ t ) .+ ( h .+ r ) ) = ( ( g .+ h ) .+ ( t .+ s ) ) ) |
|
| 33 | vex | |- h e. _V |
|
| 34 | vex | |- t e. _V |
|
| 35 | vex | |- f e. _V |
|
| 36 | vex | |- r e. _V |
|
| 37 | 33 34 35 2 4 36 | caov411 | |- ( ( h .+ t ) .+ ( f .+ r ) ) = ( ( f .+ t ) .+ ( h .+ r ) ) |
| 38 | vex | |- g e. _V |
|
| 39 | vex | |- s e. _V |
|
| 40 | 38 34 33 2 4 39 | caov411 | |- ( ( g .+ t ) .+ ( h .+ s ) ) = ( ( h .+ t ) .+ ( g .+ s ) ) |
| 41 | 38 34 33 2 4 39 | caov4 | |- ( ( g .+ t ) .+ ( h .+ s ) ) = ( ( g .+ h ) .+ ( t .+ s ) ) |
| 42 | 40 41 | eqtr3i | |- ( ( h .+ t ) .+ ( g .+ s ) ) = ( ( g .+ h ) .+ ( t .+ s ) ) |
| 43 | 32 37 42 | 3eqtr4g | |- ( ( ( f .+ t ) = ( g .+ h ) /\ ( h .+ r ) = ( t .+ s ) ) -> ( ( h .+ t ) .+ ( f .+ r ) ) = ( ( h .+ t ) .+ ( g .+ s ) ) ) |
| 44 | 31 43 | biimtrdi | |- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) /\ ( s e. S /\ r e. S ) ) -> ( ( <. f , g >. .~ <. h , t >. /\ <. h , t >. .~ <. s , r >. ) -> ( ( h .+ t ) .+ ( f .+ r ) ) = ( ( h .+ t ) .+ ( g .+ s ) ) ) ) |
| 45 | 3 | caovcl | |- ( ( h e. S /\ t e. S ) -> ( h .+ t ) e. S ) |
| 46 | 3 | caovcl | |- ( ( f e. S /\ r e. S ) -> ( f .+ r ) e. S ) |
| 47 | ovex | |- ( g .+ s ) e. _V |
|
| 48 | 47 5 | caovcan | |- ( ( ( h .+ t ) e. S /\ ( f .+ r ) e. S ) -> ( ( ( h .+ t ) .+ ( f .+ r ) ) = ( ( h .+ t ) .+ ( g .+ s ) ) -> ( f .+ r ) = ( g .+ s ) ) ) |
| 49 | 45 46 48 | syl2an | |- ( ( ( h e. S /\ t e. S ) /\ ( f e. S /\ r e. S ) ) -> ( ( ( h .+ t ) .+ ( f .+ r ) ) = ( ( h .+ t ) .+ ( g .+ s ) ) -> ( f .+ r ) = ( g .+ s ) ) ) |
| 50 | 49 | 3impb | |- ( ( ( h e. S /\ t e. S ) /\ f e. S /\ r e. S ) -> ( ( ( h .+ t ) .+ ( f .+ r ) ) = ( ( h .+ t ) .+ ( g .+ s ) ) -> ( f .+ r ) = ( g .+ s ) ) ) |
| 51 | 50 | 3com12 | |- ( ( f e. S /\ ( h e. S /\ t e. S ) /\ r e. S ) -> ( ( ( h .+ t ) .+ ( f .+ r ) ) = ( ( h .+ t ) .+ ( g .+ s ) ) -> ( f .+ r ) = ( g .+ s ) ) ) |
| 52 | 51 | 3adant3l | |- ( ( f e. S /\ ( h e. S /\ t e. S ) /\ ( s e. S /\ r e. S ) ) -> ( ( ( h .+ t ) .+ ( f .+ r ) ) = ( ( h .+ t ) .+ ( g .+ s ) ) -> ( f .+ r ) = ( g .+ s ) ) ) |
| 53 | 52 | 3adant1r | |- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) /\ ( s e. S /\ r e. S ) ) -> ( ( ( h .+ t ) .+ ( f .+ r ) ) = ( ( h .+ t ) .+ ( g .+ s ) ) -> ( f .+ r ) = ( g .+ s ) ) ) |
| 54 | 44 53 | syld | |- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) /\ ( s e. S /\ r e. S ) ) -> ( ( <. f , g >. .~ <. h , t >. /\ <. h , t >. .~ <. s , r >. ) -> ( f .+ r ) = ( g .+ s ) ) ) |
| 55 | 1 | ecopoveq | |- ( ( ( f e. S /\ g e. S ) /\ ( s e. S /\ r e. S ) ) -> ( <. f , g >. .~ <. s , r >. <-> ( f .+ r ) = ( g .+ s ) ) ) |
| 56 | 55 | 3adant2 | |- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) /\ ( s e. S /\ r e. S ) ) -> ( <. f , g >. .~ <. s , r >. <-> ( f .+ r ) = ( g .+ s ) ) ) |
| 57 | 54 56 | sylibrd | |- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) /\ ( s e. S /\ r e. S ) ) -> ( ( <. f , g >. .~ <. h , t >. /\ <. h , t >. .~ <. s , r >. ) -> <. f , g >. .~ <. s , r >. ) ) |
| 58 | 14 18 22 26 57 | 3optocl | |- ( ( A e. ( S X. S ) /\ B e. ( S X. S ) /\ C e. ( S X. S ) ) -> ( ( A .~ B /\ B .~ C ) -> A .~ C ) ) |
| 59 | 13 58 | mpcom | |- ( ( A .~ B /\ B .~ C ) -> A .~ C ) |