This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Assuming the operation F is commutative, show that the relation .~ , specified by the first hypothesis, is symmetric. (Contributed by NM, 27-Aug-1995) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ecopopr.1 | |- .~ = { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z .+ u ) = ( w .+ v ) ) ) } |
|
| ecopopr.com | |- ( x .+ y ) = ( y .+ x ) |
||
| Assertion | ecopovsym | |- ( A .~ B -> B .~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 | |- .~ = { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z .+ u ) = ( w .+ v ) ) ) } |
|
| 2 | ecopopr.com | |- ( x .+ y ) = ( y .+ x ) |
|
| 3 | opabssxp | |- { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z .+ u ) = ( w .+ v ) ) ) } C_ ( ( S X. S ) X. ( S X. S ) ) |
|
| 4 | 1 3 | eqsstri | |- .~ C_ ( ( S X. S ) X. ( S X. S ) ) |
| 5 | 4 | brel | |- ( A .~ B -> ( A e. ( S X. S ) /\ B e. ( S X. S ) ) ) |
| 6 | eqid | |- ( S X. S ) = ( S X. S ) |
|
| 7 | breq1 | |- ( <. f , g >. = A -> ( <. f , g >. .~ <. h , t >. <-> A .~ <. h , t >. ) ) |
|
| 8 | breq2 | |- ( <. f , g >. = A -> ( <. h , t >. .~ <. f , g >. <-> <. h , t >. .~ A ) ) |
|
| 9 | 7 8 | bibi12d | |- ( <. f , g >. = A -> ( ( <. f , g >. .~ <. h , t >. <-> <. h , t >. .~ <. f , g >. ) <-> ( A .~ <. h , t >. <-> <. h , t >. .~ A ) ) ) |
| 10 | breq2 | |- ( <. h , t >. = B -> ( A .~ <. h , t >. <-> A .~ B ) ) |
|
| 11 | breq1 | |- ( <. h , t >. = B -> ( <. h , t >. .~ A <-> B .~ A ) ) |
|
| 12 | 10 11 | bibi12d | |- ( <. h , t >. = B -> ( ( A .~ <. h , t >. <-> <. h , t >. .~ A ) <-> ( A .~ B <-> B .~ A ) ) ) |
| 13 | 1 | ecopoveq | |- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) ) -> ( <. f , g >. .~ <. h , t >. <-> ( f .+ t ) = ( g .+ h ) ) ) |
| 14 | vex | |- f e. _V |
|
| 15 | vex | |- t e. _V |
|
| 16 | 14 15 2 | caovcom | |- ( f .+ t ) = ( t .+ f ) |
| 17 | vex | |- g e. _V |
|
| 18 | vex | |- h e. _V |
|
| 19 | 17 18 2 | caovcom | |- ( g .+ h ) = ( h .+ g ) |
| 20 | 16 19 | eqeq12i | |- ( ( f .+ t ) = ( g .+ h ) <-> ( t .+ f ) = ( h .+ g ) ) |
| 21 | eqcom | |- ( ( t .+ f ) = ( h .+ g ) <-> ( h .+ g ) = ( t .+ f ) ) |
|
| 22 | 20 21 | bitri | |- ( ( f .+ t ) = ( g .+ h ) <-> ( h .+ g ) = ( t .+ f ) ) |
| 23 | 13 22 | bitrdi | |- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) ) -> ( <. f , g >. .~ <. h , t >. <-> ( h .+ g ) = ( t .+ f ) ) ) |
| 24 | 1 | ecopoveq | |- ( ( ( h e. S /\ t e. S ) /\ ( f e. S /\ g e. S ) ) -> ( <. h , t >. .~ <. f , g >. <-> ( h .+ g ) = ( t .+ f ) ) ) |
| 25 | 24 | ancoms | |- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) ) -> ( <. h , t >. .~ <. f , g >. <-> ( h .+ g ) = ( t .+ f ) ) ) |
| 26 | 23 25 | bitr4d | |- ( ( ( f e. S /\ g e. S ) /\ ( h e. S /\ t e. S ) ) -> ( <. f , g >. .~ <. h , t >. <-> <. h , t >. .~ <. f , g >. ) ) |
| 27 | 6 9 12 26 | 2optocl | |- ( ( A e. ( S X. S ) /\ B e. ( S X. S ) ) -> ( A .~ B <-> B .~ A ) ) |
| 28 | 5 27 | syl | |- ( A .~ B -> ( A .~ B <-> B .~ A ) ) |
| 29 | 28 | ibi | |- ( A .~ B -> B .~ A ) |