This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative law for division. ( divass analog.) (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrass.b | |- B = ( Base ` R ) |
|
| dvrass.o | |- U = ( Unit ` R ) |
||
| dvrass.d | |- ./ = ( /r ` R ) |
||
| dvrass.t | |- .x. = ( .r ` R ) |
||
| Assertion | dvrass | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( ( X .x. Y ) ./ Z ) = ( X .x. ( Y ./ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrass.b | |- B = ( Base ` R ) |
|
| 2 | dvrass.o | |- U = ( Unit ` R ) |
|
| 3 | dvrass.d | |- ./ = ( /r ` R ) |
|
| 4 | dvrass.t | |- .x. = ( .r ` R ) |
|
| 5 | simpl | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> R e. Ring ) |
|
| 6 | simpr1 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> X e. B ) |
|
| 7 | simpr2 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> Y e. B ) |
|
| 8 | simpr3 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> Z e. U ) |
|
| 9 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 10 | 2 9 1 | ringinvcl | |- ( ( R e. Ring /\ Z e. U ) -> ( ( invr ` R ) ` Z ) e. B ) |
| 11 | 5 8 10 | syl2anc | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( ( invr ` R ) ` Z ) e. B ) |
| 12 | 1 4 | ringass | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ ( ( invr ` R ) ` Z ) e. B ) ) -> ( ( X .x. Y ) .x. ( ( invr ` R ) ` Z ) ) = ( X .x. ( Y .x. ( ( invr ` R ) ` Z ) ) ) ) |
| 13 | 5 6 7 11 12 | syl13anc | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( ( X .x. Y ) .x. ( ( invr ` R ) ` Z ) ) = ( X .x. ( Y .x. ( ( invr ` R ) ` Z ) ) ) ) |
| 14 | 1 4 | ringcl | |- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 15 | 14 | 3adant3r3 | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( X .x. Y ) e. B ) |
| 16 | 1 4 2 9 3 | dvrval | |- ( ( ( X .x. Y ) e. B /\ Z e. U ) -> ( ( X .x. Y ) ./ Z ) = ( ( X .x. Y ) .x. ( ( invr ` R ) ` Z ) ) ) |
| 17 | 15 8 16 | syl2anc | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( ( X .x. Y ) ./ Z ) = ( ( X .x. Y ) .x. ( ( invr ` R ) ` Z ) ) ) |
| 18 | 1 4 2 9 3 | dvrval | |- ( ( Y e. B /\ Z e. U ) -> ( Y ./ Z ) = ( Y .x. ( ( invr ` R ) ` Z ) ) ) |
| 19 | 7 8 18 | syl2anc | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( Y ./ Z ) = ( Y .x. ( ( invr ` R ) ` Z ) ) ) |
| 20 | 19 | oveq2d | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( X .x. ( Y ./ Z ) ) = ( X .x. ( Y .x. ( ( invr ` R ) ` Z ) ) ) ) |
| 21 | 13 17 20 | 3eqtr4d | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Z e. U ) ) -> ( ( X .x. Y ) ./ Z ) = ( X .x. ( Y ./ Z ) ) ) |